Answer :
Let's address the given problems step by step.
- Simplify the expression:
[tex]\frac{14x^7y^{15}}{21x^2y^3}[/tex]
First, simplify the coefficients. [tex]\frac{14}{21} = \frac{2}{3}[/tex].
Next, apply the rules of exponents:
- For [tex]x[/tex], [tex]x^7 \div x^2 = x^{7-2} = x^5[/tex].
- For [tex]y[/tex], [tex]y^{15} \div y^3 = y^{15-3} = y^{12}[/tex].
So, the simplified expression is:
[tex]\frac{2}{3}x^5y^{12}[/tex]
- Simplify the expression:
[tex]4x^0,\; 8y^0[/tex]
We know that anything to the power of 0 is 1, so:
[tex]4 \times 1 = 4[/tex] and [tex]8 \times 1 = 8[/tex]
Since they are separated, the result is just: 4 and 8.
- Simplify the expression:
[tex]x^3 \times x^6 \times \sqrt{x}[/tex]
Using the rule [tex]a^m \times a^n = a^{m+n}[/tex], combine the exponents:
[tex]x^{3+6} \times x^{1/2} = x^{9} \times x^{1/2} = x^{9 + 1/2} = x^{19/2}[/tex]
- Simplify the expression:
[tex]10(a^2b^3)^4 \times (10b^2)^{-3}[/tex]
First, [tex](a^2b^3)^4 = a^{2 \times 4}b^{3 \times 4} = a^8b^{12}[/tex].
Next, [tex](10b^2)^{-3} = 10^{-3} \times b^{-6}[/tex].
Combining these:
[tex]10 \times a^8 \times b^{12} \times 10^{-3} \times b^{-6} = 10^{1-3} \times a^8 \times b^{12-6} = \frac{1}{100} a^8 b^6[/tex]
- Simplify the expression:
[tex]\frac{x^4}{y} \div \frac{(y^2)^3}{x}[/tex]
First, simplify [tex](y^2)^3 = y^{2 \times 3} = y^6[/tex].
So, the expression is:
[tex]\frac{x^4}{y} \div \frac{y^6}{x} = \frac{x^4}{y} \times \frac{x}{y^6} = \frac{x^{4+1}}{y^{1+6}} = \frac{x^5}{y^7}[/tex]
- Find the result of:
[tex]\log_{10} 10^5[/tex]
Using the property [tex]\log_b b^c = c[/tex], we find:
[tex]\log_{10} 10^5 = 5[/tex]
Let's stop here. Please ask for further calculations, and I'll be happy to assist you!