Answer :
To solve the equation [tex]\log_5(x^2 - 45) = \log_5(4x)[/tex], we can use the property of logarithms that states if [tex]\log_b(A) = \log_b(B)[/tex], then [tex]A = B[/tex] provided that [tex]A > 0[/tex] and [tex]B > 0[/tex].
Step-by-step Solution:
Set the arguments equal:
Since [tex]\log_5(x^2 - 45) = \log_5(4x)[/tex], set the insides equal:
[tex]x^2 - 45 = 4x.[/tex]Rearrange the equation:
Move all terms to one side of the equation to form a standard quadratic equation:
[tex]x^2 - 4x - 45 = 0.[/tex]Factor the quadratic equation:
To factor, look for two numbers that multiply to [tex]-45[/tex] and add to [tex]-4[/tex]. These numbers are [tex]-9[/tex] and [tex]5[/tex].
[tex](x - 9)(x + 5) = 0.[/tex]Solve for the variable [tex]x[/tex]:
Set each factor equal to zero:
[tex]x - 9 = 0 \quad \text{or} \quad x + 5 = 0.[/tex]
[tex]x = 9 \quad \text{or} \quad x = -5.[/tex]Check the validity of solutions:
Logarithms have a restriction that their argument must be positive. Check each solution:- For [tex]x = 9[/tex]:
[tex]x^2 - 45 = 81 - 45 = 36[/tex] (positive) and [tex]4x = 36[/tex] (positive). Thus, [tex]x = 9[/tex] is valid. - For [tex]x = -5[/tex]:
[tex]x^2 - 45 = 25 - 45 = -20[/tex] (negative) and [tex]4x = -20[/tex] (negative). Thus, [tex]x = -5[/tex] is not valid.
- For [tex]x = 9[/tex]:
Conclusion:
The solution to the equation is [tex]x = 9[/tex].