College

For one month, Siera calculated her hometown's average high temperature in degrees Fahrenheit. She wants to convert that temperature from degrees Fahrenheit to degrees Celsius using the function [tex]C(F) = \frac{5}{9}(F - 32)[/tex]. What does [tex]C(F)[/tex] represent?

A. The temperature of [tex]F[/tex] degrees Fahrenheit converted to degrees Celsius.
B. The temperature of [tex]F[/tex] degrees Celsius converted to degrees Fahrenheit.
C. The temperature of [tex]C[/tex] degrees Celsius converted to degrees Fahrenheit.

Answer :

To understand what [tex]\( C(F) \)[/tex] represents, let's look at the function [tex]\( C(F) = \frac{5}{9}(F - 32) \)[/tex].

1. Function Purpose: The formula [tex]\( C(F) = \frac{5}{9}(F - 32) \)[/tex] is a standard formula used to convert temperatures from degrees Fahrenheit (°F) to degrees Celsius (°C).

2. Breaking Down the Function:
- [tex]\( F \)[/tex]: Represents the temperature in degrees Fahrenheit that you want to convert.
- [tex]\( C(F) \)[/tex]: Represents the result, which is the temperature in degrees Celsius.

3. Conversion Process:
- The expression [tex]\( F - 32 \)[/tex] is used to adjust the Fahrenheit temperature for Celsius. This accounts for the point where Fahrenheit and Celsius start at zero degrees differently.
- The multiplication by [tex]\( \frac{5}{9} \)[/tex] scales the adjusted Fahrenheit temperature to Celsius.

4. Interpretation:
- When you use this function with a given Fahrenheit temperature, the outcome, [tex]\( C(F) \)[/tex], is the equivalent temperature in Celsius.

So, the correct interpretation of what [tex]\( C(F) \)[/tex] represents is:

The temperature of [tex]\( F \)[/tex] degrees Fahrenheit converted to degrees Celsius.