College

For one month, Siera calculated her hometown's average high temperature in degrees Fahrenheit. She wants to convert that temperature from degrees Fahrenheit to degrees Celsius using the function [tex]C(F)=\frac{5}{9}(F-32)[/tex].

What does [tex]C(F)[/tex] represent?

A. [tex]C(F)[/tex] represents the output of the function [tex]C[/tex] in degrees Celsius when the input [tex]F[/tex] is in degrees Fahrenheit.

B. [tex]C(F)[/tex] represents the output of the function [tex]F[/tex] in degrees Fahrenheit when the input [tex]C[/tex] is in degrees Celsius.

C. [tex]C(F)[/tex] represents the output of the function [tex]C[/tex] in degrees Fahrenheit when the input [tex]F[/tex] is in degrees Celsius.

D. [tex]C(F)[/tex] represents the output of the function [tex]F[/tex] in degrees Celsius when the input [tex]C[/tex] is in degrees Fahrenheit.

Answer :

To understand what the function [tex]\( C(F) = \frac{5}{9}(F - 32) \)[/tex] represents, let's break it down step by step:

1. Identify the Variables:
- [tex]\( C(F) \)[/tex] is the output of the function.
- [tex]\( F \)[/tex] is the input to the function, representing the temperature in degrees Fahrenheit.

2. Understand the Function:
- The function [tex]\( C(F) = \frac{5}{9}(F - 32) \)[/tex] is a standard formula used to convert temperatures from degrees Fahrenheit to degrees Celsius.

3. Analyze the Components:
- The part [tex]\( F - 32 \)[/tex] adjusts the input temperature in Fahrenheit by subtracting 32. This is because the freezing point of water is 32 degrees Fahrenheit, which corresponds to 0 degrees Celsius.
- Multiplying by [tex]\( \frac{5}{9} \)[/tex] is necessary to adjust the scale between Fahrenheit and Celsius, since each unit of Celsius is larger than a unit of Fahrenheit.

4. Determine What [tex]\( C(F) \)[/tex] Represents:
- [tex]\( C(F) \)[/tex] represents the temperature in degrees Celsius.
- It is the result we obtain after substituting a Fahrenheit temperature into the function and performing the conversion calculation.

5. Conclusion:
- Therefore, the correct interpretation of [tex]\( C(F) \)[/tex] is: it represents the output of the function in degrees Celsius when the input [tex]\( F \)[/tex] is in degrees Fahrenheit.

So, the option that correctly describes what [tex]\( C(F) \)[/tex] represents is:
- [tex]\( C(F) \)[/tex] represents the output of the function [tex]\( C \)[/tex] in degrees Celsius when the input [tex]\( F \)[/tex] is in degrees Fahrenheit.