Answer :
To solve the question and understand what [tex]$C(F)$[/tex] represents in the function [tex]\( C(F) = \frac{5}{9}(F - 32) \)[/tex], let's break it down step by step:
1. Understanding the Function:
- The function is given as [tex]\( C(F) = \frac{5}{9}(F - 32) \)[/tex].
- This is a mathematical formula used to convert temperatures from degrees Fahrenheit (F) to degrees Celsius (C).
2. Identifying the Components:
- In this function, [tex]\( F \)[/tex] is the input, which represents the temperature in degrees Fahrenheit.
- [tex]\( C(F) \)[/tex] is the output, which gives the corresponding temperature in degrees Celsius.
3. Interpreting What [tex]\( C(F) \)[/tex] Represents:
- Since [tex]\( C(F) \)[/tex] is the result of applying this conversion formula to the input [tex]\( F \)[/tex], it represents the temperature in degrees Celsius.
4. Conclusion:
- So, [tex]\( C(F) \)[/tex] is indeed the output of the function [tex]\( C \)[/tex] in degrees Celsius when the input [tex]\( F \)[/tex] is in degrees Fahrenheit.
Therefore, the correct interpretation is:
[tex]\( C(F) \)[/tex] represents the output of the function [tex]\( C \)[/tex] in degrees Celsius when the input [tex]\( F \)[/tex] is in degrees Fahrenheit.
1. Understanding the Function:
- The function is given as [tex]\( C(F) = \frac{5}{9}(F - 32) \)[/tex].
- This is a mathematical formula used to convert temperatures from degrees Fahrenheit (F) to degrees Celsius (C).
2. Identifying the Components:
- In this function, [tex]\( F \)[/tex] is the input, which represents the temperature in degrees Fahrenheit.
- [tex]\( C(F) \)[/tex] is the output, which gives the corresponding temperature in degrees Celsius.
3. Interpreting What [tex]\( C(F) \)[/tex] Represents:
- Since [tex]\( C(F) \)[/tex] is the result of applying this conversion formula to the input [tex]\( F \)[/tex], it represents the temperature in degrees Celsius.
4. Conclusion:
- So, [tex]\( C(F) \)[/tex] is indeed the output of the function [tex]\( C \)[/tex] in degrees Celsius when the input [tex]\( F \)[/tex] is in degrees Fahrenheit.
Therefore, the correct interpretation is:
[tex]\( C(F) \)[/tex] represents the output of the function [tex]\( C \)[/tex] in degrees Celsius when the input [tex]\( F \)[/tex] is in degrees Fahrenheit.