High School

For one month, Siera calculated her hometown's average high temperature in degrees Fahrenheit. She wants to convert that temperature from degrees Fahrenheit to degrees Celsius using the function [tex]$C(F)=\frac{5}{9}(F-32)$[/tex]. What does [tex]$C(F)$[/tex] represent?

A. [tex]$C(F)$[/tex] represents the output of the function [tex]$C$[/tex] in degrees Celsius when the input [tex]$F$[/tex] is in degrees Fahrenheit.

B. [tex]$C(F)$[/tex] represents the output of the function [tex]$F$[/tex] in degrees Fahrenheit when the input [tex]$C$[/tex] is in degrees Celsius.

C. [tex]$C(F)$[/tex] represents the output of the function [tex]$C$[/tex] in degrees Fahrenheit when the input [tex]$F$[/tex] is in degrees Celsius.

D. [tex]$C(F)$[/tex] represents the output of the function [tex]$F$[/tex] in degrees Celsius when the input [tex]$C$[/tex] is in degrees Fahrenheit.

Answer :

Certainly! Let's break this down step-by-step to understand what the function [tex]\( C(F) = \frac{5}{9}(F - 32) \)[/tex] represents.

1. Identify the Function: The function [tex]\( C(F) = \frac{5}{9}(F - 32) \)[/tex] is a standard formula used to convert temperatures from degrees Fahrenheit to degrees Celsius.

2. Understanding Inputs and Outputs:
- Input (F): This is the temperature in degrees Fahrenheit—the value you start with.
- Output/C(F): This is what the function calculates and provides you with, which is the temperature in degrees Celsius.

3. Purpose of the Function: The entire purpose of this function is to take a temperature reading in Fahrenheit (input, [tex]\( F \)[/tex]) and convert it to Celsius (output, [tex]\( C(F) \)[/tex]).

4. Verifying What [tex]\( C(F) \)[/tex] Represents:
- The function name [tex]\( C \)[/tex] suggests it’s about Celsius because [tex]\( C \)[/tex] is commonly used to denote temperature in degrees Celsius.
- The expression inside the function takes an [tex]\( F \)[/tex] value (Fahrenheit) and converts it to Celsius.

5. Choose the Correct Interpretation:
- After analyzing the components and the form of the function, the correct choice is:
- [tex]\( C(F) \)[/tex] represents the output of the function [tex]\( C \)[/tex] in degrees Celsius when the input [tex]\( F \)[/tex] is in degrees Fahrenheit.

Therefore, the function [tex]\( C(F) = \frac{5}{9}(F - 32) \)[/tex] indeed represents the conversion from Fahrenheit to Celsius, where [tex]\( C(F) \)[/tex] is the temperature in Celsius and [tex]\( F \)[/tex] is the temperature in Fahrenheit.