For one month, Siera calculated her hometown's average high temperature in degrees Fahrenheit. She wants to convert that temperature from degrees Fahrenheit to degrees Celsius using the function [tex]$C(F) = \frac{5}{9}(F - 32)$[/tex].

What does [tex]$C(F)$[/tex] represent?

A. [tex]$C(F)$[/tex] represents the output of the function [tex]$C$[/tex] in degrees Celsius when the input [tex]$F$[/tex] is in degrees Fahrenheit.

B. [tex]$C(F)$[/tex] represents the output of the function [tex]$F$[/tex] in degrees Fahrenheit when the input [tex]$C$[/tex] is in degrees Celsius.

C. [tex]$C(F)$[/tex] represents the output of the function [tex]$C$[/tex] in degrees Fahrenheit when the input [tex]$F$[/tex] is in degrees Celsius.

D. [tex]$C(F)$[/tex] represents the output of the function [tex]$F$[/tex] in degrees Celsius when the input [tex]$C$[/tex] is in degrees Fahrenheit.

Answer :

To solve the question about what [tex]\( C(F) \)[/tex] represents, let's consider the information provided:

1. Function Definition: The function [tex]\( C(F) = \frac{5}{9}(F - 32) \)[/tex] is used to convert temperatures from degrees Fahrenheit to degrees Celsius.

2. Understanding the Variables:
- [tex]\( F \)[/tex] is the input to the function and represents temperature in degrees Fahrenheit.
- [tex]\( C(F) \)[/tex] is the output of the function, which gives us the temperature in degrees Celsius after conversion.

3. Interpretation of [tex]\( C(F):
- Since \( C(F) \)[/tex] converts Fahrenheit to Celsius, it represents the temperature in degrees Celsius.

4. Identify the Correct Option:
- The option that correctly describes [tex]\( C(F) \)[/tex] is:

"[tex]$C(F)$[/tex] represents the output of the function [tex]$C$[/tex] in degrees Celsius when the input [tex]$F$[/tex] is in degrees Fahrenheit."

Therefore, this option accurately describes the purpose of [tex]\( C(F) \)[/tex] in the context of the temperature conversion function.