High School

For one month, Siera calculated her hometown's average high temperature in degrees Fahrenheit. She wants to convert that temperature from degrees Fahrenheit to degrees Celsius using the function [tex]C(F)=\frac{5}{9}(F-32)[/tex]. What does [tex]C(F)[/tex] represent?

A. [tex]C(F)[/tex] represents the output of the function [tex]C[/tex] in degrees Celsius when the input [tex]F[/tex] is in degrees Fahrenheit.

B. [tex]C(F)[/tex] represents the output of the function [tex]F[/tex] in degrees Fahrenheit when the input [tex]C[/tex] is in degrees Celsius.

C. [tex]C(F)[/tex] represents the output of the function [tex]C[/tex] in degrees Fahrenheit when the input [tex]F[/tex] is in degrees Celsius.

D. [tex]C(F)[/tex] represents the output of the function [tex]F[/tex] in degrees Celsius when the input [tex]C[/tex] is in degrees Fahrenheit.

Answer :

To convert a temperature from degrees Fahrenheit to degrees Celsius, Siera uses the function [tex]\( C(F) = \frac{5}{9}(F - 32) \)[/tex].

To understand what [tex]\( C(F) \)[/tex] represents, let's break it down step-by-step:

1. Function Definition:
- The function [tex]\( C(F) \)[/tex] is used to convert temperatures from Fahrenheit to Celsius.
- [tex]\( F \)[/tex] represents the temperature in degrees Fahrenheit.

2. Function Computation:
- The formula [tex]\( C(F) = \frac{5}{9}(F - 32) \)[/tex] is used in the conversion.
- Firstly, you subtract 32 from the Fahrenheit temperature [tex]\( F \)[/tex].
- Then, you multiply the result by [tex]\(\frac{5}{9}\)[/tex].

3. Output of the Function:
- The output [tex]\( C(F) \)[/tex] is the temperature in degrees Celsius.
- This means for a given input [tex]\( F \)[/tex] in degrees Fahrenheit, [tex]\( C(F) \)[/tex] provides the equivalent temperature in degrees Celsius.

Based on this explanation, the correct interpretation of [tex]\( C(F) \)[/tex] is:
[tex]\( C(F) \)[/tex] represents the output of the function [tex]\( C \)[/tex] in degrees Celsius when the input [tex]\( F \)[/tex] is in degrees Fahrenheit.