College

For one month, Siera calculated her hometown's average high temperature in degrees Fahrenheit. She wants to convert that temperature from degrees Fahrenheit to degrees Celsius using the function [tex]C(F)=\frac{5}{9}(F-32)[/tex].

What does [tex]C(F)[/tex] represent?

A. [tex]C(F)[/tex] represents the output of the function [tex]C[/tex] in degrees Celsius when the input [tex]F[/tex] is in degrees Fahrenheit.

B. [tex]C(F)[/tex] represents the output of the function [tex]F[/tex] in degrees Fahrenheit when the input [tex]C[/tex] is in degrees Celsius.

C. [tex]C(F)[/tex] represents the output of the function [tex]C[/tex] in degrees Fahrenheit when the input [tex]F[/tex] is in degrees Celsius.

D. [tex]C(F)[/tex] represents the output of the function [tex]F[/tex] in degrees Celsius when the input [tex]C[/tex] is in degrees Fahrenheit.

Answer :

Let's break down what the function [tex]\( C(F) = \frac{5}{9}(F - 32) \)[/tex] represents:

1. Understanding the Function:
- [tex]\( C(F) \)[/tex] is a mathematical function used to convert temperatures from degrees Fahrenheit (F) to degrees Celsius (C).
- The formula [tex]\(\frac{5}{9}(F - 32)\)[/tex] is the standard conversion method between these two temperature scales.

2. Components of the Function:
- [tex]\( F \)[/tex] is the input variable, representing a temperature in degrees Fahrenheit.
- [tex]\(\frac{5}{9}\)[/tex] is the conversion factor that adjusts the scale from Fahrenheit to Celsius.
- [tex]\( (F - 32) \)[/tex] accounts for the difference in the starting point of the two temperature scales (32°F is the freezing point of water in Fahrenheit, which corresponds to 0°C in Celsius).

3. Interpreting [tex]\( C(F) \)[/tex]:
- [tex]\( C(F) \)[/tex] represents the output of the function, which is the temperature in degrees Celsius after conversion.
- By applying the formula, you input a temperature in Fahrenheit, and the function gives you the equivalent temperature in Celsius.

Among the given options, the correct interpretation that matches this understanding is:

- "[tex]$C(F)$[/tex] represents the output of the function [tex]$C$[/tex] in degrees Celsius when the input [tex]$F$[/tex] is in degrees Fahrenheit."

This statement accurately describes the purpose and result of using the function [tex]\( C(F) \)[/tex].