High School

For one month, Siera calculated her hometown's average high temperature in degrees Fahrenheit. She wants to convert that temperature from degrees Fahrenheit to degrees Celsius using the function [tex]C(F) = \frac{5}{9}(F - 32)[/tex]. What does [tex]C(F)[/tex] represent?

A. [tex]C(F)[/tex] represents the output of the function [tex]C[/tex] in degrees Celsius when the input [tex]F[/tex] is in degrees Fahrenheit.

B. [tex]C(F)[/tex] represents the output of the function [tex]F[/tex] in degrees Fahrenheit when the input [tex]C[/tex] is in degrees Celsius.

C. [tex]C(F)[/tex] represents the output of the function [tex]C[/tex] in degrees Fahrenheit when the input [tex]F[/tex] is in degrees Celsius.

D. [tex]C(F)[/tex] represents the output of the function [tex]F[/tex] in degrees Celsius when the input [tex]C[/tex] is in degrees Fahrenheit.

Answer :

To solve this problem, we need to understand what the function [tex]\( C(F) = \frac{5}{9}(F - 32) \)[/tex] represents. This function is used to convert a temperature from degrees Fahrenheit to degrees Celsius.

Here's a step-by-step explanation:

1. Identify the Purpose of the Function:
- The function [tex]\( C(F) \)[/tex] is designed to convert temperatures. The formula specifies that when you input a temperature in degrees Fahrenheit, it performs a specific calculation to give you the corresponding temperature in degrees Celsius.

2. Understand the Components of the Function:
- In the function [tex]\( C(F) = \frac{5}{9}(F - 32) \)[/tex]:
- [tex]\( F \)[/tex] represents the input temperature in degrees Fahrenheit.
- The expression [tex]\( \frac{5}{9}(F - 32) \)[/tex] is the formula that converts Fahrenheit to Celsius.

3. Determine What [tex]\( C(F) \)[/tex] Means:
- The output of this function, [tex]\( C(F) \)[/tex], is the result of the conversion which is measured in degrees Celsius.
- Therefore, [tex]\( C(F) \)[/tex] gives you the temperature in Celsius when you have initially provided the temperature in Fahrenheit.

4. Select the Correct Description:
- From the options provided:
- “[tex]$C(F)$[/tex] represents the output of the function [tex]$C$[/tex] in degrees Celsius when the input [tex]$F$[/tex] is in degrees Fahrenheit” is the correct description.

By following these steps, we understand that [tex]\( C(F) \)[/tex] indeed represents the temperature in degrees Celsius that corresponds to an input temperature in degrees Fahrenheit.