High School

For one month, Siera calculated her hometown's average high temperature in degrees Fahrenheit. She wants to convert that temperature from degrees Fahrenheit to degrees Celsius using the function [tex]C(F)=\frac{5}{9}(F-32)[/tex]. What does [tex]C(F)[/tex] represent?

A. [tex]C(F)[/tex] represents the output of the function [tex]C[/tex] in degrees Celsius when the input [tex]F[/tex] is in degrees Fahrenheit.

B. [tex]C(F)[/tex] represents the output of the function [tex]F[/tex] in degrees Fahrenheit when the input [tex]C[/tex] is in degrees Celsius.

C. [tex]C(F)[/tex] represents the output of the function [tex]C[/tex] in degrees Fahrenheit when the input [tex]F[/tex] is in degrees Celsius.

D. [tex]C(F)[/tex] represents the output of the function [tex]F[/tex] in degrees Celsius when the input [tex]C[/tex] is in degrees Fahrenheit.

Answer :

Sure! Let's go through the question step by step to understand what [tex]$C(F)$[/tex] represents.

1. Understand the Formula:
The function given is [tex]\( C(F) = \frac{5}{9}(F - 32) \)[/tex]. This is a common formula used to convert temperatures from degrees Fahrenheit to degrees Celsius.

2. Identify the Components:
- [tex]\( C(F) \)[/tex] is the result of applying the function to convert a given temperature.
- [tex]\( F \)[/tex] is the input and represents the temperature in degrees Fahrenheit.

3. Determine the Output:
[tex]\( C(F) \)[/tex] takes the input [tex]\( F \)[/tex] in degrees Fahrenheit and converts it into degrees Celsius. Therefore, [tex]\( C(F) \)[/tex] is the output temperature in degrees Celsius after using the formula.

4. Choose the Correct Representation:
Given the options, we need to pick the one that correctly describes [tex]\( C(F) \)[/tex]:
- [tex]\( C(F) \)[/tex] represents the output of the function [tex]\( C \)[/tex] in degrees Celsius when the input [tex]\( F \)[/tex] is in degrees Fahrenheit.

This matches the first option provided:
- [tex]$C(F)$[/tex] represents the output of the function [tex]$C$[/tex] in degrees Celsius when the input [tex]$F$[/tex] is in degrees Fahrenheit.

Therefore, the correct representation is that [tex]$C(F)$[/tex] is the output in degrees Celsius when you input degrees Fahrenheit into the function.