High School

For one month, Siera calculated her hometown's average high temperature in degrees Fahrenheit. She wants to convert that temperature from degrees Fahrenheit to degrees Celsius using the function [tex]C(F)=\frac{5}{9}(F-32)[/tex]. What does [tex]C(F)[/tex] represent?

A. [tex]C(F)[/tex] represents the output of the function [tex]C[/tex] in degrees Celsius when the input [tex]F[/tex] is in degrees Fahrenheit.

B. [tex]C(F)[/tex] represents the output of the function [tex]F[/tex] in degrees Fahrenheit when the input [tex]C[/tex] is in degrees Celsius.

C. [tex]C(F)[/tex] represents the output of the function [tex]C[/tex] in degrees Fahrenheit when the input [tex]F[/tex] is in degrees Celsius.

D. [tex]C(F)[/tex] represents the output of the function [tex]F[/tex] in degrees Celsius when the input [tex]C[/tex] is in degrees Fahrenheit.

Answer :

To solve this problem, we need to understand what the function [tex]\( C(F) = \frac{5}{9}(F - 32) \)[/tex] does. This function is used to convert a temperature from degrees Fahrenheit to degrees Celsius.

Let's break it down:

1. Understand the function:
- The function given is [tex]\( C(F) = \frac{5}{9}(F - 32) \)[/tex].
- Here, [tex]\( F \)[/tex] represents the temperature in degrees Fahrenheit.
- [tex]\( C(F) \)[/tex] represents the temperature in degrees Celsius as the output of the conversion.

2. Temperature conversion formula:
- The formula [tex]\( C(F) = \frac{5}{9}(F - 32) \)[/tex] is the standard formula used to convert Fahrenheit to Celsius.
- It adjusts for the different starting points of the Celsius and Fahrenheit scales (32°F is equivalent to 0°C) and scales the difference appropriately using the factor [tex]\( \frac{5}{9} \)[/tex].

3. Interpreting the inputs and outputs:
- The function takes [tex]\( F \)[/tex] (temperature in degrees Fahrenheit) as the input.
- The output, [tex]\( C(F) \)[/tex], is the temperature in degrees Celsius.

By understanding these points, we can see that:

- [tex]\( C(F) \)[/tex] represents the output of the function [tex]\( C \)[/tex] in degrees Celsius when the input [tex]\( F \)[/tex] is in degrees Fahrenheit.

This explanation matches the first option among the given choices. So, the correct interpretation is:

"[tex]$C(F)$[/tex] represents the output of the function [tex]$C$[/tex] in degrees Celsius when the input [tex]$F$[/tex] is in degrees Fahrenheit."