High School

For one month, Siera calculated her hometown's average high temperature in degrees Fahrenheit. She wants to convert that temperature from degrees Fahrenheit to degrees Celsius using the function [tex]C(F) = \frac{5}{9}(F - 32)[/tex].

What does [tex]C(F)[/tex] represent?

A. [tex]C(F)[/tex] represents the output of the function [tex]C[/tex] in degrees Celsius when the input [tex]F[/tex] is in degrees Fahrenheit.

B. [tex]C(F)[/tex] represents the output of the function [tex]F[/tex] in degrees Fahrenheit when the input [tex]C[/tex] is in degrees Celsius.

C. [tex]C(F)[/tex] represents the output of the function [tex]C[/tex] in degrees Fahrenheit when the input [tex]F[/tex] is in degrees Celsius.

D. [tex]C(F)[/tex] represents the output of the function [tex]F[/tex] in degrees Celsius when the input [tex]C[/tex] is in degrees Fahrenheit.

Answer :

To solve this question, we need to understand what the function [tex]\( C(F) = \frac{5}{9}(F-32) \)[/tex] does.

1. Identify the Components:
- The function is used to convert temperatures from degrees Fahrenheit ([tex]\( F \)[/tex]) to degrees Celsius ([tex]\( C \)[/tex]).

2. Understand the Function:
- The formula [tex]\( C(F) = \frac{5}{9}(F-32) \)[/tex] is the standard formula to convert a temperature reading from Fahrenheit to Celsius.
- Here, [tex]\( F \)[/tex] represents the temperature in degrees Fahrenheit, and [tex]\( C(F) \)[/tex] is the temperature in degrees Celsius obtained after conversion.

3. Interpret [tex]\( C(F) \)[/tex]:
- The function takes an input [tex]\( F \)[/tex] which is the temperature in degrees Fahrenheit.
- It outputs [tex]\( C(F) \)[/tex], which is the corresponding temperature in degrees Celsius.

4. Answer The Question:
- Based on the interpretation, [tex]\( C(F) \)[/tex] represents the output of the function [tex]\( C \)[/tex] in degrees Celsius when the input [tex]\( F \)[/tex] is in degrees Fahrenheit.

Thus, the correct answer to the question is that [tex]\( C(F) \)[/tex] represents the output of the function [tex]\( C \)[/tex] in degrees Celsius when the input [tex]\( F \)[/tex] is in degrees Fahrenheit.