High School

For one month, Siera calculated her hometown's average high temperature in degrees Fahrenheit. She wants to convert that temperature from degrees Fahrenheit to degrees Celsius using the function [tex]C(F)=\frac{5}{9}(F-32)[/tex]. What does [tex]C(F)[/tex] represent?

A. [tex]C(F)[/tex] represents the output of the function [tex]C[/tex] in degrees Celsius when the input [tex]F[/tex] is in degrees Fahrenheit.

B. [tex]C(F)[/tex] represents the output of the function [tex]F[/tex] in degrees Fahrenheit when the input [tex]C[/tex] is in degrees Celsius.

C. [tex]C(F)[/tex] represents the output of the function [tex]C[/tex] in degrees Fahrenheit when the input [tex]F[/tex] is in degrees Celsius.

D. [tex]C(F)[/tex] represents the output of the function [tex]F[/tex] in degrees Celsius when the input [tex]C[/tex] is in degrees Fahrenheit.

Answer :

To solve the question about what the function [tex]\( C(F) = \frac{5}{9}(F-32) \)[/tex] represents, let's break it down.

1. Understand the Function: The function [tex]\( C(F) \)[/tex] is used to convert a temperature measured in degrees Fahrenheit ([tex]\( F \)[/tex]) to degrees Celsius ([tex]\( C \)[/tex]). This is a well-known formula for temperature conversion.

2. Identify the Components:
- Input: The input to the function is [tex]\( F \)[/tex], which represents the temperature in degrees Fahrenheit.
- Output: The output of the function is [tex]\( C(F) \)[/tex], which gives the temperature in degrees Celsius after the conversion.

3. Meaning of [tex]\( C(F) \)[/tex]:
- [tex]\( C(F) \)[/tex] stands for the result of transforming the Fahrenheit temperature into Celsius using the formula.

Therefore, the correct interpretation of what [tex]\( C(F) \)[/tex] does is:

[tex]\( C(F) \)[/tex] represents the output of the function [tex]\( C \)[/tex] in degrees Celsius when the input [tex]\( F \)[/tex] is in degrees Fahrenheit.

This matches the choice where [tex]\( C(F) \)[/tex] gives the Celsius value based on the Fahrenheit input.