High School

For one month, Siera calculated her hometown's average high temperature in degrees Fahrenheit. She wants to convert that temperature from degrees Fahrenheit to degrees Celsius using the function [tex]$C(F)=\frac{5}{9}(F-32)$[/tex].

What does [tex]$C(F)$[/tex] represent?

A. [tex][tex]$C(F)$[/tex][/tex] represents the output of the function [tex]$C$[/tex] in degrees Celsius when the input [tex]$F$[/tex] is in degrees Fahrenheit.

B. [tex][tex]$C(F)$[/tex][/tex] represents the output of the function [tex]$F$[/tex] in degrees Fahrenheit when the input [tex]$C$[/tex] is in degrees Celsius.

C. [tex][tex]$C(F)$[/tex][/tex] represents the output of the function [tex]$C$[/tex] in degrees Fahrenheit when the input [tex]$F$[/tex] is in degrees Celsius.

D. [tex][tex]$C(F)$[/tex][/tex] represents the output of the function [tex]$F$[/tex] in degrees Celsius when the input [tex]$C$[/tex] is in degrees Fahrenheit.

Answer :

Sure, let's break down the problem and understand it step-by-step.

1. Understanding the Function:
The formula given is [tex]\( C(F) = \frac{5}{9}(F - 32) \)[/tex]. This formula is used to convert a temperature from degrees Fahrenheit (F) to degrees Celsius (C).

2. Interpreting the Function:
- [tex]\( F \)[/tex] represents the temperature in degrees Fahrenheit, which is the input to the function.
- [tex]\( C(F) \)[/tex] represents the temperature in degrees Celsius, which is the output of the function after applying the conversion formula.

3. Choosing the Correct Explanation:
Based on the function [tex]\( C(F) = \frac{5}{9}(F - 32) \)[/tex], we see that it converts Fahrenheit temperatures to Celsius. Therefore, [tex]\( C(F) \)[/tex] specifically gives us the temperature in Celsius when the input is in Fahrenheit.

4. Conclusion:
The correct interpretation of [tex]\( C(F) \)[/tex] is that it represents the output of the function in degrees Celsius when the input is in degrees Fahrenheit.

Given this understanding, the correct choice from the options provided is:
- "C(F) represents the output of the function C in degrees Celsius when the input F is in degrees Fahrenheit."