Answer :
Sure, let's go through the question step by step to understand what [tex]\( C(F) \)[/tex] represents.
1. Understanding the Function:
- The function given is [tex]\( C(F) = \frac{5}{9}(F - 32) \)[/tex].
- This formula is a standard conversion used to change temperatures from degrees Fahrenheit ([tex]\( F \)[/tex]) to degrees Celsius ([tex]\( C \)[/tex]).
2. Identifying the Variables:
- In this function, [tex]\( F \)[/tex] represents the temperature in degrees Fahrenheit. It is the input to the function.
- The output of the function, [tex]\( C(F) \)[/tex], represents the temperature in degrees Celsius.
3. Correct Interpretation:
- Since [tex]\( C(F) \)[/tex] is the result of applying the function to an input [tex]\( F \)[/tex], it gives us the equivalent temperature in degrees Celsius for a given temperature in degrees Fahrenheit.
Based on this understanding, the statement that best describes what [tex]\( C(F) \)[/tex] represents is:
[tex]\( C(F) \)[/tex] represents the output of the function [tex]\( C \)[/tex] in degrees Celsius when the input [tex]\( F \)[/tex] is in degrees Fahrenheit.
This matches with option 1 from the list provided:
- [tex]$C(F)$[/tex] represents the output of the function [tex]$C$[/tex] in degrees Celsius when the input [tex]$F$[/tex] is in degrees Fahrenheit.
1. Understanding the Function:
- The function given is [tex]\( C(F) = \frac{5}{9}(F - 32) \)[/tex].
- This formula is a standard conversion used to change temperatures from degrees Fahrenheit ([tex]\( F \)[/tex]) to degrees Celsius ([tex]\( C \)[/tex]).
2. Identifying the Variables:
- In this function, [tex]\( F \)[/tex] represents the temperature in degrees Fahrenheit. It is the input to the function.
- The output of the function, [tex]\( C(F) \)[/tex], represents the temperature in degrees Celsius.
3. Correct Interpretation:
- Since [tex]\( C(F) \)[/tex] is the result of applying the function to an input [tex]\( F \)[/tex], it gives us the equivalent temperature in degrees Celsius for a given temperature in degrees Fahrenheit.
Based on this understanding, the statement that best describes what [tex]\( C(F) \)[/tex] represents is:
[tex]\( C(F) \)[/tex] represents the output of the function [tex]\( C \)[/tex] in degrees Celsius when the input [tex]\( F \)[/tex] is in degrees Fahrenheit.
This matches with option 1 from the list provided:
- [tex]$C(F)$[/tex] represents the output of the function [tex]$C$[/tex] in degrees Celsius when the input [tex]$F$[/tex] is in degrees Fahrenheit.