College

For one month, Siera calculated her hometown's average high temperature in degrees Fahrenheit. She wants to convert that temperature from degrees Fahrenheit to degrees Celsius using the function [tex]C(F) = \frac{5}{9}(F - 32)[/tex]. What does [tex]C(F)[/tex] represent?

A. [tex]C(F)[/tex] represents the output of the function [tex]C[/tex] in degrees Celsius when the input [tex]F[/tex] is in degrees Fahrenheit.

B. [tex]C(F)[/tex] represents the output of the function [tex]F[/tex] in degrees Fahrenheit when the input [tex]C[/tex] is in degrees Celsius.

C. [tex]C(F)[/tex] represents the output of the function [tex]C[/tex] in degrees Fahrenheit when the input [tex]F[/tex] is in degrees Celsius.

D. [tex]C(F)[/tex] represents the output of the function [tex]F[/tex] in degrees Celsius when the input [tex]C[/tex] is in degrees Fahrenheit.

Answer :

We are given the function

[tex]$$
C(F)=\frac{5}{9}(F-32)
$$[/tex]

which is used to convert a temperature from degrees Fahrenheit to degrees Celsius. Here is a step-by-step explanation:

1. The function is named [tex]$C$[/tex], and its variable is [tex]$F$[/tex], which represents a temperature in degrees Fahrenheit.

2. The expression [tex]$\frac{5}{9}(F-32)$[/tex] is the conversion formula. This formula tells us how to calculate the temperature in Celsius from a given Fahrenheit value.

3. Therefore, when you input a temperature in degrees Fahrenheit into the function [tex]$C$[/tex], the output, [tex]$C(F)$[/tex], represents the corresponding temperature in degrees Celsius.

Thus, [tex]$C(F)$[/tex] represents the output of the function [tex]$C$[/tex] in degrees Celsius when the input [tex]$F$[/tex] is in degrees Fahrenheit.

The correct answer is Option 1.