Answer :
The function is given by
[tex]$$
C(F) = \frac{5}{9}(F - 32).
$$[/tex]
This equation is used to convert a temperature from degrees Fahrenheit to degrees Celsius. Here’s the step-by-step explanation:
1. The variable [tex]\( F \)[/tex] represents the temperature in degrees Fahrenheit.
2. The function [tex]\( C(F) \)[/tex] takes the temperature [tex]\( F \)[/tex] as input.
3. The expression [tex]\( F - 32 \)[/tex] adjusts the Fahrenheit temperature by subtracting 32.
4. The factor [tex]\( \frac{5}{9} \)[/tex] then scales this adjusted value to give the temperature in degrees Celsius.
5. Thus, [tex]\( C(F) \)[/tex] outputs the temperature in degrees Celsius when a temperature [tex]\( F \)[/tex] in degrees Fahrenheit is input.
Therefore, [tex]\( C(F) \)[/tex] represents the output of the function [tex]\( C \)[/tex] in degrees Celsius when the input [tex]\( F \)[/tex] is in degrees Fahrenheit.
[tex]$$
C(F) = \frac{5}{9}(F - 32).
$$[/tex]
This equation is used to convert a temperature from degrees Fahrenheit to degrees Celsius. Here’s the step-by-step explanation:
1. The variable [tex]\( F \)[/tex] represents the temperature in degrees Fahrenheit.
2. The function [tex]\( C(F) \)[/tex] takes the temperature [tex]\( F \)[/tex] as input.
3. The expression [tex]\( F - 32 \)[/tex] adjusts the Fahrenheit temperature by subtracting 32.
4. The factor [tex]\( \frac{5}{9} \)[/tex] then scales this adjusted value to give the temperature in degrees Celsius.
5. Thus, [tex]\( C(F) \)[/tex] outputs the temperature in degrees Celsius when a temperature [tex]\( F \)[/tex] in degrees Fahrenheit is input.
Therefore, [tex]\( C(F) \)[/tex] represents the output of the function [tex]\( C \)[/tex] in degrees Celsius when the input [tex]\( F \)[/tex] is in degrees Fahrenheit.