High School

For one month, Siera calculated her hometown's average high temperature in degrees Fahrenheit. She wants to convert that temperature from degrees Fahrenheit to degrees Celsius using the function [tex]C(F) = \frac{5}{9}(F-32)[/tex]. What does [tex]C(F)[/tex] represent?

A. [tex]C(F)[/tex] represents the output of the function [tex]C[/tex] in degrees Celsius when the input [tex]F[/tex] is in degrees Fahrenheit.

B. [tex]C(F)[/tex] represents the output of the function [tex]F[/tex] in degrees Fahrenheit when the input [tex]C[/tex] is in degrees Celsius.

C. [tex]C(F)[/tex] represents the output of the function [tex]C[/tex] in degrees Fahrenheit when the input [tex]F[/tex] is in degrees Celsius.

D. [tex]C(F)[/tex] represents the output of the function [tex]F[/tex] in degrees Celsius when the input [tex]C[/tex] is in degrees Fahrenheit.

Answer :

We are given the conversion function

[tex]$$
C(F)=\frac{5}{9}(F-32)
$$[/tex]

which converts a temperature in degrees Fahrenheit ([tex]$F$[/tex]) to a temperature in degrees Celsius.

Step 1: Notice that [tex]$F$[/tex] is the input temperature measured in degrees Fahrenheit.
Step 2: The formula takes [tex]$F$[/tex], subtracts 32, and then multiplies by [tex]$\frac{5}{9}$[/tex] to calculate the temperature in degrees Celsius.
Step 3: Therefore, the output, [tex]$C(F)$[/tex], is the equivalent temperature in degrees Celsius.

Thus, [tex]$C(F)$[/tex] represents the output of the function [tex]$C$[/tex] in degrees Celsius when the input [tex]$F$[/tex] is in degrees Fahrenheit.

The correct answer is option 1.