Answer :
We are given the conversion function
[tex]$$
C(F)=\frac{5}{9}(F-32)
$$[/tex]
which converts a temperature in degrees Fahrenheit ([tex]$F$[/tex]) to a temperature in degrees Celsius.
Step 1: Notice that [tex]$F$[/tex] is the input temperature measured in degrees Fahrenheit.
Step 2: The formula takes [tex]$F$[/tex], subtracts 32, and then multiplies by [tex]$\frac{5}{9}$[/tex] to calculate the temperature in degrees Celsius.
Step 3: Therefore, the output, [tex]$C(F)$[/tex], is the equivalent temperature in degrees Celsius.
Thus, [tex]$C(F)$[/tex] represents the output of the function [tex]$C$[/tex] in degrees Celsius when the input [tex]$F$[/tex] is in degrees Fahrenheit.
The correct answer is option 1.
[tex]$$
C(F)=\frac{5}{9}(F-32)
$$[/tex]
which converts a temperature in degrees Fahrenheit ([tex]$F$[/tex]) to a temperature in degrees Celsius.
Step 1: Notice that [tex]$F$[/tex] is the input temperature measured in degrees Fahrenheit.
Step 2: The formula takes [tex]$F$[/tex], subtracts 32, and then multiplies by [tex]$\frac{5}{9}$[/tex] to calculate the temperature in degrees Celsius.
Step 3: Therefore, the output, [tex]$C(F)$[/tex], is the equivalent temperature in degrees Celsius.
Thus, [tex]$C(F)$[/tex] represents the output of the function [tex]$C$[/tex] in degrees Celsius when the input [tex]$F$[/tex] is in degrees Fahrenheit.
The correct answer is option 1.