Answer :
The conversion function is given by
[tex]$$
C(F) = \frac{5}{9}(F-32),
$$[/tex]
where [tex]$F$[/tex] is the temperature in degrees Fahrenheit. This function subtracts [tex]$32$[/tex] from the Fahrenheit temperature (to account for the difference in the zero points of the two scales) and then multiplies the result by [tex]$\frac{5}{9}$[/tex] to convert the difference to degrees Celsius.
Thus, for any temperature [tex]$F$[/tex] (in degrees Fahrenheit), [tex]$C(F)$[/tex] is the corresponding temperature in degrees Celsius. In other words,
[tex]$$
\text{$C(F)$ represents the output of the function $C$ in degrees Celsius when the input $F$ is in degrees Fahrenheit.}
$$[/tex]
Therefore, the correct answer is the option stating that [tex]$C(F)$[/tex] represents the output of the function [tex]$C$[/tex] in degrees Celsius when the input [tex]$F$[/tex] is in degrees Fahrenheit.
[tex]$$
C(F) = \frac{5}{9}(F-32),
$$[/tex]
where [tex]$F$[/tex] is the temperature in degrees Fahrenheit. This function subtracts [tex]$32$[/tex] from the Fahrenheit temperature (to account for the difference in the zero points of the two scales) and then multiplies the result by [tex]$\frac{5}{9}$[/tex] to convert the difference to degrees Celsius.
Thus, for any temperature [tex]$F$[/tex] (in degrees Fahrenheit), [tex]$C(F)$[/tex] is the corresponding temperature in degrees Celsius. In other words,
[tex]$$
\text{$C(F)$ represents the output of the function $C$ in degrees Celsius when the input $F$ is in degrees Fahrenheit.}
$$[/tex]
Therefore, the correct answer is the option stating that [tex]$C(F)$[/tex] represents the output of the function [tex]$C$[/tex] in degrees Celsius when the input [tex]$F$[/tex] is in degrees Fahrenheit.