College

For one month, Siera calculated her hometown's average high temperature in degrees Fahrenheit. She wants to convert that temperature from degrees Fahrenheit to degrees Celsius using the function [tex]C(F)=\frac{5}{9}(F-32)[/tex]. What does [tex]C(F)[/tex] represent?

A. [tex]C(F)[/tex] represents the output of the function [tex]C[/tex] in degrees Celsius when the input [tex]F[/tex] is in degrees Fahrenheit.

B. [tex]C(F)[/tex] represents the output of the function [tex]F[/tex] in degrees Fahrenheit when the input [tex]C[/tex] is in degrees Celsius.

C. [tex]C(F)[/tex] represents the output of the function [tex]C[/tex] in degrees Fahrenheit when the input [tex]F[/tex] is in degrees Celsius.

D. [tex]C(F)[/tex] represents the output of the function [tex]F[/tex] in degrees Celsius when the input [tex]C[/tex] is in degrees Fahrenheit.

Answer :

We start with the conversion function:

[tex]$$
C(F) = \frac{5}{9}(F - 32)
$$[/tex]

This equation is used to convert a temperature from degrees Fahrenheit to degrees Celsius.

1. The variable [tex]\( F \)[/tex] in the function is the input temperature in degrees Fahrenheit.

2. When we substitute a value for [tex]\( F \)[/tex] into the function, the calculation [tex]\( \frac{5}{9}(F - 32) \)[/tex] gives us the temperature in degrees Celsius.

3. Thus, the notation [tex]\( C(F) \)[/tex] represents the output of the function [tex]\( C \)[/tex] in degrees Celsius when the input [tex]\( F \)[/tex] is provided in degrees Fahrenheit.

Therefore, the correct interpretation is that:

[tex]$$
C(F) \text{ represents the output of the function } C \text{ in degrees Celsius when the input } F \text{ is in degrees Fahrenheit.}
$$[/tex]