Answer :
We start with the conversion function:
[tex]$$
C(F) = \frac{5}{9}(F - 32)
$$[/tex]
This equation is used to convert a temperature from degrees Fahrenheit to degrees Celsius.
1. The variable [tex]\( F \)[/tex] in the function is the input temperature in degrees Fahrenheit.
2. When we substitute a value for [tex]\( F \)[/tex] into the function, the calculation [tex]\( \frac{5}{9}(F - 32) \)[/tex] gives us the temperature in degrees Celsius.
3. Thus, the notation [tex]\( C(F) \)[/tex] represents the output of the function [tex]\( C \)[/tex] in degrees Celsius when the input [tex]\( F \)[/tex] is provided in degrees Fahrenheit.
Therefore, the correct interpretation is that:
[tex]$$
C(F) \text{ represents the output of the function } C \text{ in degrees Celsius when the input } F \text{ is in degrees Fahrenheit.}
$$[/tex]
[tex]$$
C(F) = \frac{5}{9}(F - 32)
$$[/tex]
This equation is used to convert a temperature from degrees Fahrenheit to degrees Celsius.
1. The variable [tex]\( F \)[/tex] in the function is the input temperature in degrees Fahrenheit.
2. When we substitute a value for [tex]\( F \)[/tex] into the function, the calculation [tex]\( \frac{5}{9}(F - 32) \)[/tex] gives us the temperature in degrees Celsius.
3. Thus, the notation [tex]\( C(F) \)[/tex] represents the output of the function [tex]\( C \)[/tex] in degrees Celsius when the input [tex]\( F \)[/tex] is provided in degrees Fahrenheit.
Therefore, the correct interpretation is that:
[tex]$$
C(F) \text{ represents the output of the function } C \text{ in degrees Celsius when the input } F \text{ is in degrees Fahrenheit.}
$$[/tex]