College

For one month, Siera calculated her hometown's average high temperature in degrees Fahrenheit. She wants to convert that temperature from degrees Fahrenheit to degrees Celsius using the function [tex]C(F) = \frac{5}{9}(F - 32)[/tex].

What does [tex]C(F)[/tex] represent?

A. [tex]C(F)[/tex] represents the output of the function [tex]C[/tex] in degrees Celsius when the input [tex]F[/tex] is in degrees Fahrenheit.

B. [tex]C(F)[/tex] represents the output of the function [tex]F[/tex] in degrees Fahrenheit when the input [tex]C[/tex] is in degrees Celsius.

C. [tex]C(F)[/tex] represents the output of the function [tex]C[/tex] in degrees Fahrenheit when the input [tex]F[/tex] is in degrees Celsius.

D. [tex]C(F)[/tex] represents the output of the function [tex]F[/tex] in degrees Celsius when the input [tex]C[/tex] is in degrees Fahrenheit.

Answer :

We are given the function

[tex]$$
C(F) = \frac{5}{9}(F - 32),
$$[/tex]

which is used to convert a temperature from degrees Fahrenheit to degrees Celsius.

Step 1: Identify the roles of the variables.
- The input [tex]$F$[/tex] represents a temperature in degrees Fahrenheit.
- The output [tex]$C(F)$[/tex] is the corresponding temperature in degrees Celsius.

Step 2: Understand the conversion formula.
The formula subtracts 32 from the Fahrenheit temperature and then multiplies by [tex]$\frac{5}{9}$[/tex] to convert it into Celsius. This is the well-known conversion factor between the Fahrenheit and Celsius scales.

Step 3: Interpret the function notation.
The notation [tex]$C(F)$[/tex] means that we are applying the conversion function [tex]$C$[/tex] to the value [tex]$F$[/tex]. Therefore, [tex]$C(F)$[/tex] gives us the Celsius temperature corresponding to the Fahrenheit temperature [tex]$F$[/tex].

Conclusion:
[tex]$$
C(F) \text{ represents the output of the function } C \text{ in degrees Celsius when the input } F \text{ is in degrees Fahrenheit.}
$$[/tex]

Thus, the correct answer is:
"C(F) represents the output of the function C in degrees Celsius when the input F is in degrees Fahrenheit."