Answer :
We are given the function
[tex]$$
C(F) = \frac{5}{9}(F - 32),
$$[/tex]
which is used to convert a temperature from degrees Fahrenheit to degrees Celsius.
Step 1: Identify the roles of the variables.
- The input [tex]$F$[/tex] represents a temperature in degrees Fahrenheit.
- The output [tex]$C(F)$[/tex] is the corresponding temperature in degrees Celsius.
Step 2: Understand the conversion formula.
The formula subtracts 32 from the Fahrenheit temperature and then multiplies by [tex]$\frac{5}{9}$[/tex] to convert it into Celsius. This is the well-known conversion factor between the Fahrenheit and Celsius scales.
Step 3: Interpret the function notation.
The notation [tex]$C(F)$[/tex] means that we are applying the conversion function [tex]$C$[/tex] to the value [tex]$F$[/tex]. Therefore, [tex]$C(F)$[/tex] gives us the Celsius temperature corresponding to the Fahrenheit temperature [tex]$F$[/tex].
Conclusion:
[tex]$$
C(F) \text{ represents the output of the function } C \text{ in degrees Celsius when the input } F \text{ is in degrees Fahrenheit.}
$$[/tex]
Thus, the correct answer is:
"C(F) represents the output of the function C in degrees Celsius when the input F is in degrees Fahrenheit."
[tex]$$
C(F) = \frac{5}{9}(F - 32),
$$[/tex]
which is used to convert a temperature from degrees Fahrenheit to degrees Celsius.
Step 1: Identify the roles of the variables.
- The input [tex]$F$[/tex] represents a temperature in degrees Fahrenheit.
- The output [tex]$C(F)$[/tex] is the corresponding temperature in degrees Celsius.
Step 2: Understand the conversion formula.
The formula subtracts 32 from the Fahrenheit temperature and then multiplies by [tex]$\frac{5}{9}$[/tex] to convert it into Celsius. This is the well-known conversion factor between the Fahrenheit and Celsius scales.
Step 3: Interpret the function notation.
The notation [tex]$C(F)$[/tex] means that we are applying the conversion function [tex]$C$[/tex] to the value [tex]$F$[/tex]. Therefore, [tex]$C(F)$[/tex] gives us the Celsius temperature corresponding to the Fahrenheit temperature [tex]$F$[/tex].
Conclusion:
[tex]$$
C(F) \text{ represents the output of the function } C \text{ in degrees Celsius when the input } F \text{ is in degrees Fahrenheit.}
$$[/tex]
Thus, the correct answer is:
"C(F) represents the output of the function C in degrees Celsius when the input F is in degrees Fahrenheit."