Answer :
We are given the conversion function:
[tex]$$
C(F)=\frac{5}{9}(F-32),
$$[/tex]
which means that for any temperature given in degrees Fahrenheit (represented by [tex]$F$[/tex]), the function computes the corresponding temperature in degrees Celsius.
Step-by-step explanation:
1. The function [tex]$C(F)$[/tex] takes an input [tex]$F$[/tex], which is the temperature in degrees Fahrenheit.
2. It subtracts 32 from [tex]$F$[/tex] and then multiplies the result by [tex]$\frac{5}{9}$[/tex].
3. The resulting value is the temperature expressed in degrees Celsius.
4. Therefore, [tex]$C(F)$[/tex] represents the temperature in degrees Celsius when [tex]$F$[/tex] is the temperature in degrees Fahrenheit.
Thus, the correct interpretation is:
[tex]$$
\text{$C(F)$ represents the output of the function $C$ in degrees Celsius when the input $F$ is in degrees Fahrenheit.}
$$[/tex]
[tex]$$
C(F)=\frac{5}{9}(F-32),
$$[/tex]
which means that for any temperature given in degrees Fahrenheit (represented by [tex]$F$[/tex]), the function computes the corresponding temperature in degrees Celsius.
Step-by-step explanation:
1. The function [tex]$C(F)$[/tex] takes an input [tex]$F$[/tex], which is the temperature in degrees Fahrenheit.
2. It subtracts 32 from [tex]$F$[/tex] and then multiplies the result by [tex]$\frac{5}{9}$[/tex].
3. The resulting value is the temperature expressed in degrees Celsius.
4. Therefore, [tex]$C(F)$[/tex] represents the temperature in degrees Celsius when [tex]$F$[/tex] is the temperature in degrees Fahrenheit.
Thus, the correct interpretation is:
[tex]$$
\text{$C(F)$ represents the output of the function $C$ in degrees Celsius when the input $F$ is in degrees Fahrenheit.}
$$[/tex]