High School

For one month, Siera calculated her hometown's average high temperature in degrees Fahrenheit. She wants to convert that temperature from degrees Fahrenheit to degrees Celsius using the function [tex]$C(F)=\frac{5}{9}(F-32)$[/tex]. What does [tex]$C(F)$[/tex] represent?

A. [tex]$C(F)$[/tex] represents the output of the function [tex]$C$[/tex] in degrees Celsius when the input [tex]$F$[/tex] is in degrees Fahrenheit.

B. [tex]$C(F)$[/tex] represents the output of the function [tex]$F$[/tex] in degrees Fahrenheit when the input [tex]$C$[/tex] is in degrees Celsius.

C. [tex]$C(F)$[/tex] represents the output of the function [tex]$C$[/tex] in degrees Fahrenheit when the input [tex]$F$[/tex] is in degrees Celsius.

D. [tex]$C(F)$[/tex] represents the output of the function [tex]$F$[/tex] in degrees Celsius when the input [tex]$C$[/tex] is in degrees Fahrenheit.

Answer :

We are given the conversion function

$$
C(F) = \frac{5}{9}(F - 32).
$$

Here, the variable $F$ represents a temperature measured in degrees Fahrenheit. The function computes the corresponding value in degrees Celsius by subtracting 32 from the Fahrenheit temperature and then multiplying by $\frac{5}{9}$.

Thus, $C(F)$ is the temperature in degrees Celsius that results from converting a temperature given in degrees Fahrenheit.

Therefore, the correct interpretation is that:

$$
C(F) \text{ represents the output of the function } C \text{ in degrees Celsius when the input } F \text{ is in degrees Fahrenheit.}
$$

This corresponds to the first option.