College

On his first day of school, Kareem found the high temperature in degrees Fahrenheit to be [tex]76.1^{\circ}[/tex]. He plans to use the function [tex]C(F)=\frac{5}{9}(F-32)[/tex] to convert this temperature from degrees Fahrenheit to degrees Celsius.

What does [tex]C(76.1)[/tex] represent?

A. The temperature of 76.1 degrees Fahrenheit converted to degrees Celsius.

B. The temperature of 76.1 degrees Celsius converted to degrees Fahrenheit.

C. The amount of time it takes a temperature of 76.1 degrees Fahrenheit to be converted to 32 degrees Celsius.

D. The amount of time it takes a temperature of 76.1 degrees Celsius to be converted to 32 degrees Fahrenheit.

Answer :

Sure! Let's solve this step-by-step:

Kareem wants to convert a temperature of 76.1 degrees Fahrenheit to degrees Celsius. He plans to use the formula:

[tex]\[ C(F) = \frac{5}{9}(F - 32) \][/tex]

Where:
- [tex]\( C(F) \)[/tex] is the temperature in degrees Celsius.
- [tex]\( F \)[/tex] is the temperature in degrees Fahrenheit.

Now, we'll use the given Fahrenheit temperature [tex]\( F = 76.1 \)[/tex] degrees.

1. Subtract 32 from the Fahrenheit temperature:
[tex]\( 76.1 - 32 = 44.1 \)[/tex]

2. Multiply the result by [tex]\(\frac{5}{9}\)[/tex]:
[tex]\(\frac{5}{9} \times 44.1 = 24.5\)[/tex]

Therefore, [tex]\( C(76.1) \)[/tex] represents the temperature of 76.1 degrees Fahrenheit converted to approximately 24.5 degrees Celsius.

So, the correct interpretation of [tex]\( C(76.1) \)[/tex] is the temperature of 76.1 degrees Fahrenheit converted to degrees Celsius.