Answer :
Sure! Let's solve this step-by-step:
Kareem wants to convert a temperature of 76.1 degrees Fahrenheit to degrees Celsius. He plans to use the formula:
[tex]\[ C(F) = \frac{5}{9}(F - 32) \][/tex]
Where:
- [tex]\( C(F) \)[/tex] is the temperature in degrees Celsius.
- [tex]\( F \)[/tex] is the temperature in degrees Fahrenheit.
Now, we'll use the given Fahrenheit temperature [tex]\( F = 76.1 \)[/tex] degrees.
1. Subtract 32 from the Fahrenheit temperature:
[tex]\( 76.1 - 32 = 44.1 \)[/tex]
2. Multiply the result by [tex]\(\frac{5}{9}\)[/tex]:
[tex]\(\frac{5}{9} \times 44.1 = 24.5\)[/tex]
Therefore, [tex]\( C(76.1) \)[/tex] represents the temperature of 76.1 degrees Fahrenheit converted to approximately 24.5 degrees Celsius.
So, the correct interpretation of [tex]\( C(76.1) \)[/tex] is the temperature of 76.1 degrees Fahrenheit converted to degrees Celsius.
Kareem wants to convert a temperature of 76.1 degrees Fahrenheit to degrees Celsius. He plans to use the formula:
[tex]\[ C(F) = \frac{5}{9}(F - 32) \][/tex]
Where:
- [tex]\( C(F) \)[/tex] is the temperature in degrees Celsius.
- [tex]\( F \)[/tex] is the temperature in degrees Fahrenheit.
Now, we'll use the given Fahrenheit temperature [tex]\( F = 76.1 \)[/tex] degrees.
1. Subtract 32 from the Fahrenheit temperature:
[tex]\( 76.1 - 32 = 44.1 \)[/tex]
2. Multiply the result by [tex]\(\frac{5}{9}\)[/tex]:
[tex]\(\frac{5}{9} \times 44.1 = 24.5\)[/tex]
Therefore, [tex]\( C(76.1) \)[/tex] represents the temperature of 76.1 degrees Fahrenheit converted to approximately 24.5 degrees Celsius.
So, the correct interpretation of [tex]\( C(76.1) \)[/tex] is the temperature of 76.1 degrees Fahrenheit converted to degrees Celsius.