Answer :
We are given the function
[tex]$$
C(F) = \frac{5}{9}(F - 32)
$$[/tex]
which converts a temperature from degrees Fahrenheit to degrees Celsius. In this problem, we have a temperature of [tex]$76.1^\circ \text{F}$[/tex] and we want to find the equivalent temperature in Celsius.
Step 1: Subtract 32 from the Fahrenheit temperature
We start by subtracting [tex]$32$[/tex] from [tex]$76.1$[/tex]:
[tex]$$
76.1 - 32 = 44.1
$$[/tex]
Step 2: Multiply by [tex]$\frac{5}{9}$[/tex]
Next, we multiply the result by [tex]$\frac{5}{9}$[/tex]:
[tex]$$
C(76.1) = \frac{5}{9} \times 44.1
$$[/tex]
Multiplying the numerator:
[tex]$$
5 \times 44.1 = 220.5
$$[/tex]
Then, dividing by [tex]$9$[/tex]:
[tex]$$
\frac{220.5}{9} \approx 24.5
$$[/tex]
Thus, [tex]$C(76.1)$[/tex] is approximately [tex]$24.5^\circ \text{C}$[/tex].
Interpretation:
[tex]$C(76.1)$[/tex] represents the temperature of [tex]$76.1^\circ \text{F}$[/tex] converted to degrees Celsius.
[tex]$$
C(F) = \frac{5}{9}(F - 32)
$$[/tex]
which converts a temperature from degrees Fahrenheit to degrees Celsius. In this problem, we have a temperature of [tex]$76.1^\circ \text{F}$[/tex] and we want to find the equivalent temperature in Celsius.
Step 1: Subtract 32 from the Fahrenheit temperature
We start by subtracting [tex]$32$[/tex] from [tex]$76.1$[/tex]:
[tex]$$
76.1 - 32 = 44.1
$$[/tex]
Step 2: Multiply by [tex]$\frac{5}{9}$[/tex]
Next, we multiply the result by [tex]$\frac{5}{9}$[/tex]:
[tex]$$
C(76.1) = \frac{5}{9} \times 44.1
$$[/tex]
Multiplying the numerator:
[tex]$$
5 \times 44.1 = 220.5
$$[/tex]
Then, dividing by [tex]$9$[/tex]:
[tex]$$
\frac{220.5}{9} \approx 24.5
$$[/tex]
Thus, [tex]$C(76.1)$[/tex] is approximately [tex]$24.5^\circ \text{C}$[/tex].
Interpretation:
[tex]$C(76.1)$[/tex] represents the temperature of [tex]$76.1^\circ \text{F}$[/tex] converted to degrees Celsius.