College

On his first day of school, Kareem found the high temperature to be [tex]76.1^{\circ}[/tex] Fahrenheit. He plans to use the function [tex]C(F)=\frac{5}{9}(F-32)[/tex] to convert this temperature from degrees Fahrenheit to degrees Celsius.

What does [tex]C(76.1)[/tex] represent?

A. The temperature of 76.1 degrees Fahrenheit converted to degrees Celsius.
B. The temperature of 76.1 degrees Celsius converted to degrees Fahrenheit.
C. The amount of time it takes a temperature of 76.1 degrees Fahrenheit to be converted to 32 degrees Celsius.
D. The amount of time it takes a temperature of 76.1 degrees Celsius to be converted to 32 degrees Fahrenheit.

Answer :

We are given the conversion function

[tex]$$
C(F)=\frac{5}{9}(F-32)
$$[/tex]

which converts a Fahrenheit temperature [tex]$F$[/tex] to its equivalent in Celsius. Here is the step-by-step process:

1. Substitute the Fahrenheit temperature [tex]$76.1^\circ$[/tex] into the function:

[tex]$$
C(76.1)=\frac{5}{9}(76.1-32)
$$[/tex]

2. Calculate the difference:

[tex]$$
76.1 - 32 \approx 44.1
$$[/tex]

3. Multiply by the conversion factor [tex]$\frac{5}{9}$[/tex]:

[tex]$$
\frac{5}{9} \times 44.1 \approx 24.5
$$[/tex]

Thus, [tex]$C(76.1)$[/tex] is approximately [tex]$24.5^\circ$[/tex] Celsius.

This value represents the temperature of [tex]$76.1^\circ$[/tex] Fahrenheit converted to degrees Celsius.