College

Select the correct option.

Use the given graph of [tex]f(x) = 2|x-5| - 1[/tex] to solve [tex]2|x-5| - 1 = 5[/tex].

A. [tex]x = -2[/tex] or [tex]x = -8[/tex]
B. [tex]x = 2[/tex] or [tex]x = 8[/tex]
C. [tex]x = 2[/tex] or [tex]x = -8[/tex]
D. [tex]x = -2[/tex] or [tex]x = 8[/tex]

Answer :

To solve the equation [tex]\(2|x-5|-1=5\)[/tex], we can follow these steps:

1. Isolate the absolute value expression:
Start by adding 1 to both sides of the equation:
[tex]\[
2|x-5|-1 + 1 = 5 + 1
\][/tex]
which simplifies to:
[tex]\[
2|x-5| = 6
\][/tex]

2. Solve for the absolute value:
Next, divide both sides by 2 to isolate the absolute value:
[tex]\[
|x-5| = \frac{6}{2}
\][/tex]
which simplifies to:
[tex]\[
|x-5| = 3
\][/tex]

3. Break down the absolute value into two cases:
The equation [tex]\(|x-5| = 3\)[/tex] means there are two possible cases:
- Case 1: [tex]\(x-5 = 3\)[/tex]
- Case 2: [tex]\(x-5 = -3\)[/tex]

4. Solve each case separately:
- For Case 1: [tex]\(x-5 = 3\)[/tex],
[tex]\[
x = 3 + 5 = 8
\][/tex]
- For Case 2: [tex]\(x-5 = -3\)[/tex],
[tex]\[
x = -3 + 5 = 2
\][/tex]

5. State the solutions:
Therefore, the solutions to the equation [tex]\(2|x-5|-1=5\)[/tex] are [tex]\(x = 2\)[/tex] and [tex]\(x = 8\)[/tex].

The correct options for the solutions are [tex]\(x = 2\)[/tex] or [tex]\(x = 8\)[/tex].