College

Solve [tex]$4|x+5|=16$[/tex]

A. [tex]$x=-1$[/tex] and [tex]$x=9$[/tex]
B. [tex]$x=1$[/tex] and [tex]$x=-9$[/tex]
C. [tex]$x=-1$[/tex] and [tex]$x=-9$[/tex]
D. [tex]$x=1$[/tex] and [tex]$x=1$[/tex]

Answer :

Sure! Let's solve the given equation step by step.

The equation we have is:

[tex]\[ 4|x+5| = 16 \][/tex]

### Step 1: Isolate the Absolute Value
First, divide both sides of the equation by 4 to isolate the absolute value expression:

[tex]\[ |x+5| = \frac{16}{4} \][/tex]

[tex]\[ |x+5| = 4 \][/tex]

### Step 2: Set Up Two Equations
The absolute value equation [tex]\( |x+5| = 4 \)[/tex] can be broken down into two separate linear equations:

1. [tex]\( x + 5 = 4 \)[/tex]
2. [tex]\( x + 5 = -4 \)[/tex]

### Step 3: Solve Each Equation

#### Solving Equation 1:
[tex]\[ x + 5 = 4 \][/tex]

Subtract 5 from both sides:

[tex]\[ x = 4 - 5 \][/tex]

[tex]\[ x = -1 \][/tex]

#### Solving Equation 2:
[tex]\[ x + 5 = -4 \][/tex]

Subtract 5 from both sides:

[tex]\[ x = -4 - 5 \][/tex]

[tex]\[ x = -9 \][/tex]

### Step 4: Combine Solutions
The solutions to the equation [tex]\( 4|x+5| = 16 \)[/tex] are [tex]\( x = -1 \)[/tex] and [tex]\( x = -9 \)[/tex].

Therefore, the correct answer is:
[tex]\[ \boxed{\text{C. } x = -1 \text{ and } x = -9} \][/tex]