Answer :
Sure, let's solve the given equation step-by-step.
The equation is [tex]\(4|x+5|=16\)[/tex].
1. Isolate the absolute value expression:
[tex]\[
4|x+5| = 16
\][/tex]
Divide both sides by 4 to get:
[tex]\[
|x+5| = 4
\][/tex]
2. Solve the absolute value equation:
The equation [tex]\(|x+5| = 4\)[/tex] means that [tex]\(x+5\)[/tex] can be 4 or -4. Hence, we consider two cases:
- Case 1: [tex]\(x+5 = 4\)[/tex]
- Case 2: [tex]\(x+5 = -4\)[/tex]
3. Solve for [tex]\(x\)[/tex] in each case:
- Case 1:
[tex]\[
x+5 = 4
\][/tex]
Subtract 5 from both sides:
[tex]\[
x = 4 - 5
\][/tex]
[tex]\[
x = -1
\][/tex]
- Case 2:
[tex]\[
x+5 = -4
\][/tex]
Subtract 5 from both sides:
[tex]\[
x = -4 - 5
\][/tex]
[tex]\[
x = -9
\][/tex]
4. List possible solutions:
The solutions are [tex]\(x = -1\)[/tex] and [tex]\(x= -9\)[/tex].
So the correct answer is [tex]\( \boxed{\text{D. } x=-1 \text{ and } x=-9} \)[/tex].
The equation is [tex]\(4|x+5|=16\)[/tex].
1. Isolate the absolute value expression:
[tex]\[
4|x+5| = 16
\][/tex]
Divide both sides by 4 to get:
[tex]\[
|x+5| = 4
\][/tex]
2. Solve the absolute value equation:
The equation [tex]\(|x+5| = 4\)[/tex] means that [tex]\(x+5\)[/tex] can be 4 or -4. Hence, we consider two cases:
- Case 1: [tex]\(x+5 = 4\)[/tex]
- Case 2: [tex]\(x+5 = -4\)[/tex]
3. Solve for [tex]\(x\)[/tex] in each case:
- Case 1:
[tex]\[
x+5 = 4
\][/tex]
Subtract 5 from both sides:
[tex]\[
x = 4 - 5
\][/tex]
[tex]\[
x = -1
\][/tex]
- Case 2:
[tex]\[
x+5 = -4
\][/tex]
Subtract 5 from both sides:
[tex]\[
x = -4 - 5
\][/tex]
[tex]\[
x = -9
\][/tex]
4. List possible solutions:
The solutions are [tex]\(x = -1\)[/tex] and [tex]\(x= -9\)[/tex].
So the correct answer is [tex]\( \boxed{\text{D. } x=-1 \text{ and } x=-9} \)[/tex].