High School

Solve [tex]$4|x+5|=24$[/tex]

A. [tex]$x=11$[/tex] and [tex]$x=-11$[/tex]

B. [tex]$x=-11$[/tex] and [tex]$x=-1$[/tex]

C. [tex]$x=11$[/tex] and [tex]$x=-1$[/tex]

D. [tex]$x=-11$[/tex] and [tex]$x=1$[/tex]

Answer :

Sure! Let's solve the given equation step-by-step.

The equation to solve is:
[tex]\[4|x+5|=24\][/tex]

1. First, isolate the absolute value expression by dividing both sides of the equation by 4:
[tex]\[\frac{4|x+5|}{4} = \frac{24}{4}\][/tex]
Simplifying this, we get:
[tex]\[|x+5| = 6\][/tex]

2. To solve for [tex]\(x\)[/tex], we need to consider the two cases that arise from the definition of absolute value:
- Case 1: [tex]\(x + 5 = 6\)[/tex]
- Case 2: [tex]\(x + 5 = -6\)[/tex]

3. Let's solve these two cases separately:

- For Case 1: [tex]\(x + 5 = 6\)[/tex]
[tex]\[
x + 5 = 6 \implies x = 6 - 5 \implies x = 1
\][/tex]

- For Case 2: [tex]\(x + 5 = -6\)[/tex]
[tex]\[
x + 5 = -6 \implies x = -6 - 5 \implies x = -11
\][/tex]

Therefore, we find two solutions:
[tex]\[ x = 1 \][/tex]
[tex]\[ x = -11 \][/tex]

Hence, the correct answer is:
[tex]\[ \text{D. } x = -11 \text{ and } x = 1 \][/tex]