Solve [tex]$4|x+5|=24$[/tex]

A. [tex]$x=11$[/tex] and [tex]$x=-1$[/tex]
B. [tex]$x=-11$[/tex] and [tex]$x=1$[/tex]
C. [tex]$x=-11$[/tex] and [tex]$x=-1$[/tex]
D. [tex]$x=11$[/tex] and [tex]$x=-11$[/tex]

Answer :

Sure, let's solve the equation step-by-step!

The given equation is:
[tex]\[ 4|x+5| = 24 \][/tex]

First, we need to isolate the absolute value expression by dividing both sides of the equation by 4:
[tex]\[ |x+5| = \frac{24}{4} \][/tex]
[tex]\[ |x+5| = 6 \][/tex]

The absolute value equation [tex]\( |x+5| = 6 \)[/tex] can be split into two separate equations:
1. [tex]\( x + 5 = 6 \)[/tex]
2. [tex]\( x + 5 = -6 \)[/tex]

Now, let's solve each equation separately.

1. For [tex]\( x + 5 = 6 \)[/tex]:
[tex]\[ x + 5 = 6 \][/tex]
Subtract 5 from both sides:
[tex]\[ x = 6 - 5 \][/tex]
[tex]\[ x = 1 \][/tex]

2. For [tex]\( x + 5 = -6 \)[/tex]:
[tex]\[ x + 5 = -6 \][/tex]
Subtract 5 from both sides:
[tex]\[ x = -6 - 5 \][/tex]
[tex]\[ x = -11 \][/tex]

So, the solutions to the equation [tex]\( 4|x+5| = 24 \)[/tex] are:
[tex]\[ x = 1 \, \text{and} \, x = -11 \][/tex]

Based on the given options:
A. [tex]\( x = 11 \)[/tex] and [tex]\( x = -1 \)[/tex]
B. [tex]\( x = -11 \)[/tex] and [tex]\( x = 1 \)[/tex]
C. [tex]\( x = -11 \)[/tex] and [tex]\( x = -1 \)[/tex]
D. [tex]\( x = 11 \)[/tex] and [tex]\( x = -11 \)[/tex]

The correct answer is:
B. [tex]\( x = -11 \)[/tex] and [tex]\( x = 1 \)[/tex]