Answer :
To solve the equation [tex]\(4|x+5|=24\)[/tex], follow these steps:
1. Isolate the absolute value expression:
[tex]\[
4|x+5| = 24
\][/tex]
Divide both sides by 4:
[tex]\[
|x+5| = \frac{24}{4}
\][/tex]
[tex]\[
|x+5| = 6
\][/tex]
2. Set up the two cases for the absolute value:
The absolute value [tex]\( |x + 5| = 6 \)[/tex] can be broken into two separate equations:
- Case 1: [tex]\( x + 5 = 6 \)[/tex]
- Case 2: [tex]\( x + 5 = -6 \)[/tex]
3. Solve for [tex]\(x\)[/tex] in each case:
- For Case 1: [tex]\( x + 5 = 6 \)[/tex]
Subtract 5 from both sides:
[tex]\[
x = 6 - 5
\][/tex]
[tex]\[
x = 1
\][/tex]
- For Case 2: [tex]\( x + 5 = -6 \)[/tex]
Subtract 5 from both sides:
[tex]\[
x = -6 - 5
\][/tex]
[tex]\[
x = -11
\][/tex]
4. Write the solution:
Therefore, the solutions to the equation [tex]\( 4|x + 5| = 24 \)[/tex] are:
[tex]\[
x = 1 \text{ and } x = -11
\][/tex]
Given the provided options, the correct one is:
B. [tex]\(x = -11\)[/tex] and [tex]\(x = 1\)[/tex]
1. Isolate the absolute value expression:
[tex]\[
4|x+5| = 24
\][/tex]
Divide both sides by 4:
[tex]\[
|x+5| = \frac{24}{4}
\][/tex]
[tex]\[
|x+5| = 6
\][/tex]
2. Set up the two cases for the absolute value:
The absolute value [tex]\( |x + 5| = 6 \)[/tex] can be broken into two separate equations:
- Case 1: [tex]\( x + 5 = 6 \)[/tex]
- Case 2: [tex]\( x + 5 = -6 \)[/tex]
3. Solve for [tex]\(x\)[/tex] in each case:
- For Case 1: [tex]\( x + 5 = 6 \)[/tex]
Subtract 5 from both sides:
[tex]\[
x = 6 - 5
\][/tex]
[tex]\[
x = 1
\][/tex]
- For Case 2: [tex]\( x + 5 = -6 \)[/tex]
Subtract 5 from both sides:
[tex]\[
x = -6 - 5
\][/tex]
[tex]\[
x = -11
\][/tex]
4. Write the solution:
Therefore, the solutions to the equation [tex]\( 4|x + 5| = 24 \)[/tex] are:
[tex]\[
x = 1 \text{ and } x = -11
\][/tex]
Given the provided options, the correct one is:
B. [tex]\(x = -11\)[/tex] and [tex]\(x = 1\)[/tex]