High School

Solve [tex]$4|x+5|=24$[/tex].

A. [tex]$x=-11$[/tex] and [tex]$x=-1$[/tex]
B. [tex]$x=-11$[/tex] and [tex]$x=1$[/tex]
C. [tex]$x=11$[/tex] and [tex]$x=-11$[/tex]
D. [tex]$x=11$[/tex] and [tex]$x=-1$[/tex]

Answer :

To solve the equation [tex]\( 4|x+5|=24 \)[/tex], we can follow these steps:

1. Divide both sides by 4:
[tex]\[
|x+5| = \frac{24}{4} = 6
\][/tex]

2. Set up the two possible equations:
Since we have an absolute value, [tex]\( |x+5| = 6 \)[/tex] means there are two scenarios to consider:
- [tex]\( x + 5 = 6 \)[/tex]
- [tex]\( x + 5 = -6 \)[/tex]

3. Solve each equation separately:
- For the first scenario [tex]\( x + 5 = 6 \)[/tex]:
[tex]\[
x + 5 = 6
\][/tex]
Subtract 5 from both sides:
[tex]\[
x = 6 - 5 = 1
\][/tex]

- For the second scenario [tex]\( x + 5 = -6 \)[/tex]:
[tex]\[
x + 5 = -6
\][/tex]
Subtract 5 from both sides:
[tex]\[
x = -6 - 5 = -11
\][/tex]

4. Write down the solutions:
The solutions to the equation [tex]\( 4|x+5|=24 \)[/tex] are [tex]\( x = 1 \)[/tex] and [tex]\( x = -11 \)[/tex].

Therefore, the correct answer is B. [tex]\( x = -11 \)[/tex] and [tex]\( x = 1 \)[/tex].