College

Solve [tex]$4|x+5| + 8 = 24$[/tex]

A. [tex]$x = -1$[/tex] and [tex][tex]$x = 9$[/tex][/tex]
B. [tex]$x = 1$[/tex] and [tex]$x = -1$[/tex]
C. [tex][tex]$x = 1$[/tex][/tex] and [tex]$x = -9$[/tex]
D. [tex]$x = -1$[/tex] and [tex][tex]$x = -9$[/tex][/tex]

Answer :

Sure! Let's solve the equation step-by-step.

The equation we need to solve is:
[tex]\[ 4|x+5| + 8 = 24 \][/tex]

1. Isolate the absolute value term:
[tex]\[
4|x+5| + 8 = 24
\][/tex]
Subtract 8 from both sides:
[tex]\[
4|x+5| = 16
\][/tex]

2. Divide both sides by 4 to solve for the absolute value term:
[tex]\[
|x+5| = 4
\][/tex]

3. Set up two separate equations to handle the absolute value. Absolute values split into two scenarios:
- [tex]\( x+5 = 4 \)[/tex]
- [tex]\( x+5 = -4 \)[/tex]

4. Solve each equation separately:

- For [tex]\( x+5 = 4 \)[/tex]:
[tex]\[
x = 4 - 5
\][/tex]
[tex]\[
x = -1
\][/tex]

- For [tex]\( x+5 = -4 \)[/tex]:
[tex]\[
x = -4 - 5
\][/tex]
[tex]\[
x = -9
\][/tex]

So, the solutions to the equation [tex]\( 4|x+5| + 8 = 24 \)[/tex] are [tex]\( x = -1 \)[/tex] and [tex]\( x = -9 \)[/tex].

Therefore, the correct answer is:
D. [tex]\( x = -1 \)[/tex] and [tex]\( x = -9 \)[/tex]