Answer :
Sure, let's solve the equation [tex]\( 4|x+5| + 8 = 24 \)[/tex] step-by-step.
1. Isolate the absolute value term:
[tex]\[
4|x+5| + 8 = 24
\][/tex]
Subtract 8 from both sides:
[tex]\[
4|x+5| = 16
\][/tex]
2. Divide both sides by 4:
[tex]\[
|x+5| = 4
\][/tex]
3. Solve the absolute value equation:
The equation [tex]\( |x+5| = 4 \)[/tex] means that [tex]\( x+5 \)[/tex] can be either 4 or -4.
So, let's consider the two cases:
- Case 1: [tex]\( x+5 = 4 \)[/tex]
- Case 2: [tex]\( x+5 = -4 \)[/tex]
4. Solve each case:
- Case 1:
[tex]\[
x+5 = 4
\][/tex]
Subtract 5 from both sides:
[tex]\[
x = -1
\][/tex]
- Case 2:
[tex]\[
x+5 = -4
\][/tex]
Subtract 5 from both sides:
[tex]\[
x = -9
\][/tex]
5. Write the solutions:
The solutions to the equation [tex]\( 4|x+5| + 8 = 24 \)[/tex] are [tex]\( x = -1 \)[/tex] and [tex]\( x = -9 \)[/tex].
So, the correct answer is:
A. [tex]\( x = -1 \)[/tex] and [tex]\( x = -9 \)[/tex]
1. Isolate the absolute value term:
[tex]\[
4|x+5| + 8 = 24
\][/tex]
Subtract 8 from both sides:
[tex]\[
4|x+5| = 16
\][/tex]
2. Divide both sides by 4:
[tex]\[
|x+5| = 4
\][/tex]
3. Solve the absolute value equation:
The equation [tex]\( |x+5| = 4 \)[/tex] means that [tex]\( x+5 \)[/tex] can be either 4 or -4.
So, let's consider the two cases:
- Case 1: [tex]\( x+5 = 4 \)[/tex]
- Case 2: [tex]\( x+5 = -4 \)[/tex]
4. Solve each case:
- Case 1:
[tex]\[
x+5 = 4
\][/tex]
Subtract 5 from both sides:
[tex]\[
x = -1
\][/tex]
- Case 2:
[tex]\[
x+5 = -4
\][/tex]
Subtract 5 from both sides:
[tex]\[
x = -9
\][/tex]
5. Write the solutions:
The solutions to the equation [tex]\( 4|x+5| + 8 = 24 \)[/tex] are [tex]\( x = -1 \)[/tex] and [tex]\( x = -9 \)[/tex].
So, the correct answer is:
A. [tex]\( x = -1 \)[/tex] and [tex]\( x = -9 \)[/tex]