College

Solve [tex]4|x+5|+8=24[/tex]

A. [tex]x=-1[/tex] and [tex]x=9[/tex]
B. [tex]x=-1[/tex] and [tex]x=-9[/tex]
C. [tex]x=1[/tex] and [tex]x=-9[/tex]
D. [tex]x=1[/tex] and [tex]x=-1[/tex]

Answer :

Let's solve the equation step by step:

The equation we need to solve is:
[tex]\[ 4|x+5| + 8 = 24 \][/tex]

1. Isolate the Absolute Value:
Subtract 8 from both sides of the equation:
[tex]\[ 4|x+5| = 24 - 8 \][/tex]
[tex]\[ 4|x+5| = 16 \][/tex]

2. Divide Both Sides by 4:
[tex]\[ |x+5| = \frac{16}{4} \][/tex]
[tex]\[ |x+5| = 4 \][/tex]

3. Set Up Two Equations:
The absolute value equation [tex]\( |x+5| = 4 \)[/tex] gives us two possible equations, since the expression inside the absolute value can be either positive or negative:
- [tex]\( x+5 = 4 \)[/tex]
- [tex]\( x+5 = -4 \)[/tex]

4. Solve Each Equation:

- For [tex]\( x+5 = 4 \)[/tex]:
[tex]\[ x = 4 - 5 \][/tex]
[tex]\[ x = -1 \][/tex]

- For [tex]\( x+5 = -4 \)[/tex]:
[tex]\[ x = -4 - 5 \][/tex]
[tex]\[ x = -9 \][/tex]

Therefore, the solutions are [tex]\( x = -1 \)[/tex] and [tex]\( x = -9 \)[/tex].

The correct answer from the choices is:
B. [tex]\( x = -1 \)[/tex] and [tex]\( x = -9 \)[/tex]