High School

Solve [tex]$4|x+6|+8=28$[/tex].

A. [tex]$x=1$[/tex] and [tex]$x=-1$[/tex]

B. [tex]$x=-1$[/tex] and [tex]$x=-11$[/tex]

C. [tex]$x=1$[/tex] and [tex]$x=-11$[/tex]

D. [tex]$x=-1$[/tex] and [tex]$x=11$[/tex]

Answer :

Let's solve the equation step by step:

The original equation is:
[tex]\[ 4|x+6| + 8 = 28 \][/tex]

1. Isolate the absolute value:

First, subtract 8 from both sides of the equation to help isolate the absolute value term:
[tex]\[ 4|x+6| = 20 \][/tex]

2. Divide both sides by 4:

[tex]\[ |x+6| = 5 \][/tex]

3. Consider the two cases for the absolute value:

An absolute value equation [tex]\(|x+6| = 5\)[/tex] can be split into two separate equations:

- Case 1: Positive scenario
[tex]\[ x + 6 = 5 \][/tex]
Solve for [tex]\(x\)[/tex]:
[tex]\[ x = 5 - 6 \][/tex]
[tex]\[ x = -1 \][/tex]

- Case 2: Negative scenario
[tex]\[ x + 6 = -5 \][/tex]
Solve for [tex]\(x\)[/tex]:
[tex]\[ x = -5 - 6 \][/tex]
[tex]\[ x = -11 \][/tex]

So, the solutions to the equation are [tex]\(x = -1\)[/tex] and [tex]\(x = -11\)[/tex].

The correct answer is:
B. [tex]\(x = -1\)[/tex] and [tex]\(x = -11\)[/tex]