College

Solve [tex]$4|x+7|+8=32$[/tex]

A. [tex]$x=1$[/tex] and [tex]$x=-13$[/tex]

B. [tex]$x=-1$[/tex] and [tex]$x=-13$[/tex]

C. [tex]$x=-1$[/tex] and [tex]$x=13$[/tex]

D. [tex]$x=1$[/tex] and [tex]$x=-1$[/tex]

Answer :

Sure, let's solve the equation step by step:

Given the equation:
[tex]\[ 4|x+7| + 8 = 32 \][/tex]

1. First, isolate the absolute value term by subtracting 8 from both sides:
[tex]\[ 4|x+7| + 8 - 8 = 32 - 8 \][/tex]
[tex]\[ 4|x+7| = 24 \][/tex]

2. Next, divide both sides by 4 to further isolate the absolute value:
[tex]\[ \frac{4|x+7|}{4} = \frac{24}{4} \][/tex]
[tex]\[ |x+7| = 6 \][/tex]

3. Now, solve the absolute value equation by considering two cases:
- Case 1: When the expression inside the absolute value is positive:
[tex]\[ x + 7 = 6 \][/tex]
Subtract 7 from both sides:
[tex]\[ x = 6 - 7 \][/tex]
[tex]\[ x = -1 \][/tex]

- Case 2: When the expression inside the absolute value is negative:
[tex]\[ x + 7 = -6 \][/tex]
Subtract 7 from both sides:
[tex]\[ x = -6 - 7 \][/tex]
[tex]\[ x = -13 \][/tex]

So, the solutions to the equation are:
[tex]\[ x = -1 \][/tex]
and
[tex]\[ x = -13 \][/tex]

Therefore, the correct answer is:
B. [tex]\(x = -1\)[/tex] and [tex]\(x = -13\)[/tex]