College

Solve [tex]|x+5|-6=7[/tex].

A. [tex]x=8[/tex] and [tex]x=-8[/tex]
B. [tex]x=-8[/tex] and [tex]x=18[/tex]
C. [tex]x=-8[/tex] and [tex]x=-18[/tex]
D. [tex]x=8[/tex] and [tex]x=-18[/tex]

Answer :

To solve the equation [tex]\( |x + 5| - 6 = 7 \)[/tex], we'll follow these steps:

1. Isolate the Absolute Value:
Start by moving the -6 to the other side of the equation:
[tex]\[
|x + 5| = 7 + 6
\][/tex]
Simplify the right side to get:
[tex]\[
|x + 5| = 13
\][/tex]

2. Consider the Definition of Absolute Value:
The equation [tex]\( |x + 5| = 13 \)[/tex] means that the expression inside the absolute value, [tex]\( x + 5 \)[/tex], can be either 13 or -13. This gives us two separate equations:
- [tex]\( x + 5 = 13 \)[/tex]
- [tex]\( x + 5 = -13 \)[/tex]

3. Solve Each Equation:

- For [tex]\( x + 5 = 13 \)[/tex]:
[tex]\[
x = 13 - 5
\][/tex]
[tex]\[
x = 8
\][/tex]

- For [tex]\( x + 5 = -13 \)[/tex]:
[tex]\[
x = -13 - 5
\][/tex]
[tex]\[
x = -18
\][/tex]

4. Solutions:
The solutions to the equation [tex]\( |x + 5| - 6 = 7 \)[/tex] are [tex]\( x = 8 \)[/tex] and [tex]\( x = -18 \)[/tex].

Therefore, the correct answer is option D: [tex]\( x = 8 \)[/tex] and [tex]\( x = -18 \)[/tex].