High School

Solve [tex]|x+5|-6=7[/tex]

A. [tex]x=8[/tex] and [tex]x=-18[/tex]
B. [tex]x=-8[/tex] and [tex]x=-18[/tex]
C. [tex]x=8[/tex] and [tex]x=-8[/tex]
D. [tex]x=-8[/tex] and [tex]x=18[/tex]

Answer :

To solve the equation [tex]\(|x+5| - 6 = 7\)[/tex], we'll break it down step-by-step.

1. Isolate the Absolute Value:
Start by adding 6 to both sides of the equation to isolate the absolute value term.

[tex]\[
|x+5| - 6 + 6 = 7 + 6
\][/tex]

Simplifying, we have:

[tex]\[
|x+5| = 13
\][/tex]

2. Remove the Absolute Value:
The expression [tex]\(|x+5| = 13\)[/tex] means that the inside of the absolute value can be either equal to 13 or [tex]\(-13\)[/tex]. This gives us two separate equations to solve:

- First Equation:
[tex]\[
x + 5 = 13
\][/tex]

Solve for [tex]\(x\)[/tex] by subtracting 5 from both sides:
[tex]\[
x = 13 - 5
\][/tex]
[tex]\[
x = 8
\][/tex]

- Second Equation:
[tex]\[
x + 5 = -13
\][/tex]

Solve for [tex]\(x\)[/tex] by subtracting 5 from both sides:
[tex]\[
x = -13 - 5
\][/tex]
[tex]\[
x = -18
\][/tex]

3. Conclusion:
The solutions to the equation [tex]\(|x+5| - 6 = 7\)[/tex] are [tex]\(x = 8\)[/tex] and [tex]\(x = -18\)[/tex].

Thus, the correct choice is A. [tex]\(x = 8\)[/tex] and [tex]\(x = -18\)[/tex].