College

Solve [tex]|x-5|+7=15[/tex].

A. [tex]x=13[/tex] and [tex]x=-3[/tex]
B. [tex]x=13[/tex] and [tex]x=-13[/tex]
C. [tex]x=-13[/tex] and [tex]x=-[/tex]
D. [tex]x=-13[/tex] and [tex]x=3[/tex]

Answer :

We start with the equation

[tex]$$
|x - 5| + 7 = 15.
$$[/tex]

Step 1. Isolate the absolute value expression

Subtract 7 from both sides to get

[tex]$$
|x - 5| = 15 - 7 = 8.
$$[/tex]

Step 2. Solve the absolute value equation

The definition of absolute value gives us two cases:

1. When the expression inside is positive:

[tex]$$
x - 5 = 8.
$$[/tex]

Solving for [tex]$x$[/tex], add 5 to both sides:

[tex]$$
x = 8 + 5 = 13.
$$[/tex]

2. When the expression inside is negative:

[tex]$$
x - 5 = -8.
$$[/tex]

Solving for [tex]$x$[/tex], add 5 to both sides:

[tex]$$
x = -8 + 5 = -3.
$$[/tex]

Step 3. Conclude the solutions

The two solutions for the equation are

[tex]$$
x = 13 \quad \text{and} \quad x = -3.
$$[/tex]

Thus, the correct answer is:

A. [tex]$x=13$[/tex] and [tex]$x=-3$[/tex].