High School

The function [tex]C(f) = \frac{5}{9}(f - 32)[/tex] converts a temperature [tex]f[/tex] degrees Fahrenheit to [tex]C[/tex] degrees Celsius. Determine [tex]C(39)[/tex] to the nearest degree.

Answer :

To convert a temperature from Fahrenheit to Celsius using the given function [tex]\( C(f) = \frac{5}{9}(f - 32) \)[/tex], we'll follow these steps:

1. Identify the Fahrenheit Temperature: We are given [tex]\( f = 39 \)[/tex] degrees Fahrenheit.

2. Plug the Value into the Conversion Formula:
[tex]\[
C(39) = \frac{5}{9}(39 - 32)
\][/tex]

3. Calculate the Difference Inside the Parentheses:
[tex]\[
39 - 32 = 7
\][/tex]

4. Multiply by the Conversion Factor:
[tex]\[
C(39) = \frac{5}{9} \times 7
\][/tex]

5. Perform the Multiplication:
[tex]\[
\frac{5}{9} \times 7 = \frac{35}{9} \approx 3.888889
\][/tex]

6. Round to the Nearest Degree:
The Celsius temperature, [tex]\( C(39) \)[/tex], rounds to [tex]\( 4 \)[/tex] degrees when rounded to the nearest whole number.

Therefore, [tex]\( C(39) \)[/tex] is approximately [tex]\( 4 \)[/tex] degrees Celsius.