High School

Use the functions to answer parts a and b:

[tex]
\[
\begin{align*}
f(x) &= 1.25x \\
g(x) &= 0.15625x^2 \\
h(x) &= 1.31^x
\end{align*}
\]
[/tex]

a. Evaluate each function for [tex]x = 6[/tex], [tex]x = 8[/tex], and [tex]x = 12[/tex].

Evaluate [tex]f(x)[/tex] at [tex]x = 6[/tex], [tex]x = 8[/tex], and [tex]x = 12[/tex]:
- [tex]f(6) = 7.5[/tex]
- [tex]f(8) = 10[/tex]
- [tex]f(12) = 15[/tex]

Evaluate [tex]g(x)[/tex] at [tex]x = 6[/tex], [tex]x = 8[/tex], and [tex]x = 12[/tex]:
- [tex]g(6) = 5.625[/tex]
- [tex]g(8) = 10[/tex]
- [tex]g(12) = 22.5[/tex]

Evaluate [tex]h(x)[/tex] at [tex]x = 6[/tex], [tex]x = 8[/tex], and [tex]x = 12[/tex]:
- [tex]h(6) = 4.595[/tex]
- [tex]h(8) = 8.219[/tex]
- [tex]h(12) = 22.807[/tex]

b. When will function [tex]h[/tex] exceed both function [tex]f[/tex] and function [tex]g[/tex]?

Answer :

We are given the functions

[tex]$$
f(x)=1.25x,\quad g(x)=0.15625x^2,\quad h(x)=1.31^x.
$$[/tex]

We wish to:

1. Evaluate these functions at [tex]$x=6,\;8,\;12$[/tex].
2. Determine the smallest integer [tex]$x$[/tex] when [tex]$h(x)$[/tex] exceeds both [tex]$f(x)$[/tex] and [tex]$g(x)$[/tex].

–––––––––––
Step 1. Evaluation for [tex]$x=6,\;8,\;12$[/tex]

–––––––––––
For function [tex]$f(x)$[/tex]:

• When [tex]$x=6$[/tex]:

[tex]$$
f(6)=1.25 \times 6=7.5.
$$[/tex]

• When [tex]$x=8$[/tex]:

[tex]$$
f(8)=1.25 \times 8=10.0.
$$[/tex]

• When [tex]$x=12$[/tex]:

[tex]$$
f(12)=1.25 \times 12=15.0.
$$[/tex]

–––––––––––
For function [tex]$g(x)$[/tex]:

• When [tex]$x=6$[/tex]:

[tex]$$
g(6)=0.15625 \times 6^2=0.15625 \times 36=5.625.
$$[/tex]

• When [tex]$x=8$[/tex]:

[tex]$$
g(8)=0.15625 \times 8^2=0.15625 \times 64=10.0.
$$[/tex]

• When [tex]$x=12$[/tex]:

[tex]$$
g(12)=0.15625 \times 12^2=0.15625 \times 144=22.5.
$$[/tex]

–––––––––––
For function [tex]$h(x)$[/tex]:

• When [tex]$x=6$[/tex]:

[tex]$$
h(6)=1.31^6\approx 5.054,
$$[/tex]

rounded to the nearest thousandth.

• When [tex]$x=8$[/tex]:

[tex]$$
h(8)=1.31^8\approx 8.673,
$$[/tex]

rounded as needed.

• When [tex]$x=12$[/tex]:

[tex]$$
h(12)=1.31^{12}\approx 25.542,
$$[/tex]

rounded to the nearest thousandth.

–––––––––––
Step 2. Finding when [tex]$h(x)$[/tex] exceeds both [tex]$f(x)$[/tex] and [tex]$g(x)$[/tex]

We wish to find the smallest integer [tex]$x$[/tex] such that

[tex]$$
h(x)>f(x)\quad\text{and}\quad h(x)>g(x).
$$[/tex]

Testing at [tex]$x=1$[/tex]:

• Calculate

[tex]$$
f(1)=1.25 \times 1=1.25,
$$[/tex]

[tex]$$
g(1)=0.15625 \times 1^2=0.15625,
$$[/tex]

[tex]$$
h(1)=1.31^1=1.31.
$$[/tex]

Since

[tex]$$
1.31>1.25 \quad \text{and}\quad 1.31>0.15625,
$$[/tex]

both conditions are satisfied at [tex]$x=1$[/tex].

–––––––––––
Conclusion

a) The function evaluations are:

[tex]$$
\begin{array}{llll}
&x=6& x=8 &x=12\\[6pt]
f(x)&7.5&10.0&15.0\\[6pt]
g(x)&5.625&10.0&22.5\\[6pt]
h(x)&\approx 5.054&\approx 8.673&\approx 25.542\\
\end{array}
$$[/tex]

b) The smallest integer [tex]$x$[/tex] for which [tex]$h(x)$[/tex] exceeds both [tex]$f(x)$[/tex] and [tex]$g(x)$[/tex] is [tex]$x=1$[/tex].