Answer :

The fully simplified expression is 54[tex]\sqrt{2}[/tex] - 2[tex]\sqrt{3}[/tex].

The correct answer is option E.

Given expression: [tex]\sqrt{6}[/tex] * 2[tex]\sqrt{3}[/tex] * [tex]\sqrt{27}[/tex] - [tex]\sqrt{12}[/tex]

Simplify [tex]\sqrt{27}[/tex] to get 3[tex]\sqrt{3}[/tex]:

[tex]\sqrt{6}[/tex]* 2[tex]\sqrt{3}[/tex] * 3[tex]\sqrt{3}[/tex]- [tex]\sqrt{12}[/tex]

Simplify [tex]\sqrt{6}[/tex]* 2[tex]\sqrt{3}[/tex] to get 2[tex]\sqrt{18}[/tex]:

2[tex]\sqrt{18}[/tex] * 3[tex]\sqrt{3}[/tex]- [tex]\sqrt{12}[/tex]

Simplify sqrt(18) to get ([tex]\sqrt{9 * 2}[/tex]):

2([tex]\sqrt{9 * 2}[/tex]):* 3[tex]\sqrt{3}[/tex] - [tex]\sqrt{12}[/tex]

Further simplify ([tex]\sqrt{9 * 2}[/tex]):to get 3[tex]\sqrt{2}[/tex]:

2 * 3[tex]\sqrt{2}[/tex] * 3[tex]\sqrt{3}[/tex] - [tex]\sqrt{12}[/tex]

Simplify 2 * 3[tex]\sqrt{2}[/tex] to get 6[tex]\sqrt{2}[/tex]:

6[tex]\sqrt{2}[/tex] * 3[tex]\sqrt{3}[/tex]- [tex]\sqrt{12}[/tex]

Simplify [tex]\sqrt{12}[/tex] to get 2[tex]\sqrt{3}[/tex]:

6[tex]\sqrt{2}[/tex] * 3[tex]\sqrt{3}[/tex]- 2[tex]\sqrt{3}[/tex]

Distribute and multiply:

18[tex]\sqrt{6}[/tex] [tex]\sqrt{3}[/tex] - 2[tex]\sqrt{3}[/tex]

Simplify [tex]\sqrt{6}[/tex] [tex]\sqrt{3}[/tex] to get [tex]\sqrt{18}[/tex]:

18[tex]\sqrt{18}[/tex] - 2[tex]\sqrt{3}[/tex]

Simplify [tex]\sqrt{18}[/tex] to get 3[tex]\sqrt{2}[/tex]:

18 * 3[tex]\sqrt{2}[/tex] - 2[tex]\sqrt{3}[/tex]

Multiply and combine like terms:

54[tex]\sqrt{2}[/tex] - 2[tex]\sqrt{3}[/tex]

For more such information on: expression

https://brainly.com/question/1859113

#SPJ11

The question probable may be:

Which choice is equivalent to the expression below?

[tex]\sqrt{6}[/tex] * 2[tex]\sqrt{3}[/tex] *[tex]\sqrt{27}[/tex]- [tex]\sqrt{12}[/tex]

A. 3[tex]\sqrt{3}[/tex]+ [tex]\sqrt{6}[/tex]

B. 5[tex]\sqrt{3}[/tex]

C. 5[tex]\sqrt{3}[/tex] - 6

D. 2[tex]\sqrt{3}[/tex]- [tex]\sqrt{21}[/tex]

E. none of them