College

Which choice is equivalent to the expression below?

[tex](-5)^{-2}[/tex]

A. [tex]-\frac{1}{25}[/tex]
B. 25
C. [tex]\frac{1}{25}[/tex]
D. 10

Answer :

To solve the expression [tex]$(-5)^{-2}$[/tex], let's break it down step-by-step.

1. Understand Negative Exponents: A negative exponent means you take the reciprocal of the base. For example, [tex]\( a^{-b} = \frac{1}{a^b} \)[/tex].

2. Apply the Negative Exponent Rule: For the expression [tex]\((-5)^{-2}\)[/tex]:
[tex]\[
(-5)^{-2} = \frac{1}{(-5)^2}
\][/tex]

3. Calculate the Positive Exponent: Now, calculate [tex]\((-5)^2\)[/tex]:
[tex]\[
(-5) \times (-5) = 25
\][/tex]

4. Find the Reciprocal: Since we have [tex]\(\frac{1}{(-5)^2}\)[/tex], now substitute the value we found:
[tex]\[
\frac{1}{25}
\][/tex]

So, [tex]\((-5)^{-2}\)[/tex] is equivalent to [tex]\(\frac{1}{25}\)[/tex].

Therefore, the correct choice is [tex]\( C. \frac{1}{25} \)[/tex].