High School

Which choice is equivalent to the expression below?

[tex]\sqrt{18} - \sqrt{2}[/tex]

A. 3
B. [tex]\sqrt{16}[/tex]
C. [tex]2 \sqrt{2}[/tex]
D. [tex]16 \sqrt{2}[/tex]

Answer :

Let's simplify the expression [tex]\(\sqrt{18} - \sqrt{2}\)[/tex] step-by-step to find which choice is equivalent.

1. Simplify [tex]\(\sqrt{18}\)[/tex]:

[tex]\(\sqrt{18}\)[/tex] can be rewritten by factoring 18. We know that 18 is [tex]\(9 \times 2\)[/tex], so:

[tex]\[
\sqrt{18} = \sqrt{9 \times 2}
\][/tex]

We can break down the square root:

[tex]\[
\sqrt{18} = \sqrt{9} \times \sqrt{2}
\][/tex]

Since [tex]\(\sqrt{9} = 3\)[/tex], we have:

[tex]\[
\sqrt{18} = 3 \times \sqrt{2}
\][/tex]

2. Subtract [tex]\(\sqrt{2}\)[/tex]:

Now, substitute the simplified form of [tex]\(\sqrt{18}\)[/tex] into the expression:

[tex]\[
3\sqrt{2} - \sqrt{2}
\][/tex]

We can factor out [tex]\(\sqrt{2}\)[/tex]:

[tex]\[
(3 - 1)\sqrt{2} = 2\sqrt{2}
\][/tex]

So, the expression [tex]\(\sqrt{18} - \sqrt{2}\)[/tex] simplifies to [tex]\(2\sqrt{2}\)[/tex].

Therefore, the choice equivalent to the expression is:

C. [tex]\(2\sqrt{2}\)[/tex]