Which choice is equivalent to the expression below?

[tex]\sqrt{40} + 2\sqrt{10} + \sqrt{90}[/tex]

A. [tex]7\sqrt{10}[/tex]
B. [tex]13\sqrt{10}[/tex]
C. [tex]18\sqrt{10}[/tex]
D. [tex]10\sqrt{10}[/tex]

Answer :

To solve the expression [tex]\(\sqrt{40} + 2\sqrt{10} + \sqrt{90}\)[/tex], we can simplify the square roots first:

1. Simplifying [tex]\(\sqrt{40}\)[/tex]:
- The number 40 can be expressed as [tex]\(4 \times 10\)[/tex].
- [tex]\(\sqrt{40} = \sqrt{4 \times 10} = \sqrt{4} \times \sqrt{10} = 2\sqrt{10}\)[/tex].

2. Simplifying [tex]\(\sqrt{90}\)[/tex]:
- The number 90 can be expressed as [tex]\(9 \times 10\)[/tex].
- [tex]\(\sqrt{90} = \sqrt{9 \times 10} = \sqrt{9} \times \sqrt{10} = 3\sqrt{10}\)[/tex].

Now, substitute these simplified values back into the original expression:

- [tex]\(\sqrt{40} = 2\sqrt{10}\)[/tex]
- [tex]\(2\sqrt{10}\)[/tex] (already in its simplest form)
- [tex]\(\sqrt{90} = 3\sqrt{10}\)[/tex]

Combine all of these:

[tex]\[
2\sqrt{10} + 2\sqrt{10} + 3\sqrt{10}
\][/tex]

Combine the like terms:

[tex]\[
(2 + 2 + 3)\sqrt{10} = 7\sqrt{10}
\][/tex]

Therefore, the expression simplifies to [tex]\(7\sqrt{10}\)[/tex]. The correct choice is:

A. [tex]\(7\sqrt{10}\)[/tex]