High School

Which choice is equivalent to the expression below?

[tex]\sqrt{40} + 8\sqrt{10} + \sqrt{90}[/tex]

A. [tex]10\sqrt{10}[/tex]

B. [tex]18\sqrt{10}[/tex]

C. [tex]7\sqrt{10}[/tex]

D. [tex]13\sqrt{10}[/tex]

Answer :

We begin by simplifying each square root term.

1. Simplify [tex]$\sqrt{40}$[/tex]:
[tex]$$\sqrt{40} = \sqrt{4 \times 10} = \sqrt{4} \times \sqrt{10} = 2\sqrt{10}.$$[/tex]

2. The middle term [tex]$8\sqrt{10}$[/tex] remains as it is.

3. Simplify [tex]$\sqrt{90}$[/tex]:
[tex]$$\sqrt{90} = \sqrt{9 \times 10} = \sqrt{9} \times \sqrt{10} = 3\sqrt{10}.$$[/tex]

Now, we add the simplified terms:
[tex]$$2\sqrt{10} + 8\sqrt{10} + 3\sqrt{10} = (2+8+3)\sqrt{10} = 13\sqrt{10}.$$[/tex]

Thus, the expression simplifies to [tex]$\boxed{13\sqrt{10}}$[/tex], which corresponds to choice D.