Answer :
First, note that the square root of 50 can be simplified as follows:
[tex]$$
\sqrt{50} = \sqrt{25 \times 2} = \sqrt{25}\sqrt{2} = 5\sqrt{2}.
$$[/tex]
Replacing [tex]$\sqrt{50}$[/tex] in the original expression gives:
[tex]$$
\sqrt{50} - \sqrt{2} = 5\sqrt{2} - \sqrt{2}.
$$[/tex]
Now, combine like terms by subtracting the coefficients of [tex]$\sqrt{2}$[/tex]:
[tex]$$
5\sqrt{2} - \sqrt{2} = (5-1)\sqrt{2} = 4\sqrt{2}.
$$[/tex]
Thus, the expression [tex]$\sqrt{50} - \sqrt{2}$[/tex] is equivalent to [tex]$4\sqrt{2}$[/tex], which corresponds to option D.
[tex]$$
\sqrt{50} = \sqrt{25 \times 2} = \sqrt{25}\sqrt{2} = 5\sqrt{2}.
$$[/tex]
Replacing [tex]$\sqrt{50}$[/tex] in the original expression gives:
[tex]$$
\sqrt{50} - \sqrt{2} = 5\sqrt{2} - \sqrt{2}.
$$[/tex]
Now, combine like terms by subtracting the coefficients of [tex]$\sqrt{2}$[/tex]:
[tex]$$
5\sqrt{2} - \sqrt{2} = (5-1)\sqrt{2} = 4\sqrt{2}.
$$[/tex]
Thus, the expression [tex]$\sqrt{50} - \sqrt{2}$[/tex] is equivalent to [tex]$4\sqrt{2}$[/tex], which corresponds to option D.